摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(1R,3R)-1-(9-adenenyl)-3-(methyl-carboxymethyl)-4-cyclopentene | 426226-11-1

中文名称
——
中文别名
——
英文名称
(1R,3R)-1-(9-adenenyl)-3-(methyl-carboxymethyl)-4-cyclopentene
英文别名
methyl 2-[(1R,4R)-4-(6-aminopurin-9-yl)cyclopent-2-en-1-yl]acetate
(1R,3R)-1-(9-adenenyl)-3-(methyl-carboxymethyl)-4-cyclopentene化学式
CAS
426226-11-1
化学式
C13H15N5O2
mdl
——
分子量
273.294
InChiKey
IZQJUZPJSVGAAA-BDAKNGLRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.8
  • 重原子数:
    20
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.38
  • 拓扑面积:
    95.9
  • 氢给体数:
    1
  • 氢受体数:
    6

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (1R,3R)-1-(9-adenenyl)-3-(methyl-carboxymethyl)-4-cyclopentene 在 palladium on activated charcoal 氢氧化钾盐酸羟胺氢气 作用下, 以 甲醇 为溶剂, 20.0 ℃ 、101.33 kPa 条件下, 反应 20.75h, 生成 (1S,3R)-1-(9-adenenyl)-3-(N-hydroxycarbamoylmethyl)cyclopentane
    参考文献:
    名称:
    Metal Coordination-Based Inhibitors of Adenylyl Cyclase:  Novel Potent P-Site Antagonists
    摘要:
    The adenylyl cyclases (ACS) are a family of intracellular enzymes associated with signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the so-called purine binding site (P-site) of the enzyme followed by metal-mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known, and unique isoform combinations are expressed in a tissue-specific manner. The development of isoform-specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of unique signal transduction inhibitors. To develop novel AC inhibitors, we have chosen an approach to inhibitor design utilizing an adenine ring system joined to a metal-coordinating hydroxamic acid via various linkers. Previous work in our group has validated this approach and identified novel inhibitors that possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible acyclic linkers (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 30853088). Subsequent studies have focused on the introduction of conformational restrictions into the tether of the inhibitors with the goal of increasing potency (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 3089-3092). Building upon the favorable spatial positioning of the adenine and hydroxamate groups coupled with potentially favorable entropic factors, the unit joining the carbocycle to the hydroxamate was explored further and a stereochemical-based SAR was elucidated, leading to a new series of highly potent AC inhibitors.
    DOI:
    10.1021/jm0205604
  • 作为产物:
    描述:
    2-环戊烯-1-醇,4-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]-,(1R,4S)- 在 甲醇四丁基氟化铵sodium methylate 、 sodium hydride 、 甲基磺酰氯N,N-二异丙基乙胺三苯基膦 、 lithium iodide 、 偶氮二甲酸二乙酯 作用下, 以 四氢呋喃二氯甲烷N,N-二甲基甲酰胺 为溶剂, 反应 105.0h, 生成 (1R,3R)-1-(9-adenenyl)-3-(methyl-carboxymethyl)-4-cyclopentene
    参考文献:
    名称:
    Metal Coordination-Based Inhibitors of Adenylyl Cyclase:  Novel Potent P-Site Antagonists
    摘要:
    The adenylyl cyclases (ACS) are a family of intracellular enzymes associated with signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the so-called purine binding site (P-site) of the enzyme followed by metal-mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known, and unique isoform combinations are expressed in a tissue-specific manner. The development of isoform-specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of unique signal transduction inhibitors. To develop novel AC inhibitors, we have chosen an approach to inhibitor design utilizing an adenine ring system joined to a metal-coordinating hydroxamic acid via various linkers. Previous work in our group has validated this approach and identified novel inhibitors that possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible acyclic linkers (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 30853088). Subsequent studies have focused on the introduction of conformational restrictions into the tether of the inhibitors with the goal of increasing potency (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 3089-3092). Building upon the favorable spatial positioning of the adenine and hydroxamate groups coupled with potentially favorable entropic factors, the unit joining the carbocycle to the hydroxamate was explored further and a stereochemical-based SAR was elucidated, leading to a new series of highly potent AC inhibitors.
    DOI:
    10.1021/jm0205604
点击查看最新优质反应信息

文献信息

  • Metal Coordination-Based Inhibitors of Adenylyl Cyclase:  Novel Potent P-Site Antagonists
    作者:Daniel E. Levy、Ming Bao、Diana B. Cherbavaz、James E. Tomlinson、David M. Sedlock、Charles J. Homcy、Robert M. Scarborough
    DOI:10.1021/jm0205604
    日期:2003.5.1
    The adenylyl cyclases (ACS) are a family of intracellular enzymes associated with signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the so-called purine binding site (P-site) of the enzyme followed by metal-mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known, and unique isoform combinations are expressed in a tissue-specific manner. The development of isoform-specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of unique signal transduction inhibitors. To develop novel AC inhibitors, we have chosen an approach to inhibitor design utilizing an adenine ring system joined to a metal-coordinating hydroxamic acid via various linkers. Previous work in our group has validated this approach and identified novel inhibitors that possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible acyclic linkers (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 30853088). Subsequent studies have focused on the introduction of conformational restrictions into the tether of the inhibitors with the goal of increasing potency (Levy, D. E., et al. Bioorg. Med. Chem. Lett. 2002, 12, 3089-3092). Building upon the favorable spatial positioning of the adenine and hydroxamate groups coupled with potentially favorable entropic factors, the unit joining the carbocycle to the hydroxamate was explored further and a stereochemical-based SAR was elucidated, leading to a new series of highly potent AC inhibitors.
查看更多

同类化合物

顺式5-氟-1-[2-(羟甲基)-1,3-氧硫杂环戊-5-基]-2,4(1H,3H)-嘧啶二酮-13C,15N2 顺式5-氟-1-[2-(羟甲基)-1,3-氧硫杂环戊-5-基]-2,4(1H,3H)-嘧啶二酮 顺-5-氟-1-[2-[[[[(((1,1-二甲基乙基)二甲基甲硅烷基]氧基]甲基]-1,3-氧杂硫杂环戊-5-基]-2,4(1H,3H)-嘧啶二酮-13C,15N2 顺-5-氟-1-[2-[[[[(((1,1-二甲基乙基)二甲基甲硅烷基]氧基]甲基]-1,3-氧杂硫杂环戊-5-基]-2,4(1H,3H)-嘧啶二酮 阿巴卡韦羧酸盐 阿巴卡韦相关物质D 阿巴卡韦杂质F 阿巴卡韦杂质 阿巴卡韦中间体A5 阿巴卡韦5’-磷酸酯 阿巴卡韦,拉米夫定混合物 阿巴卡韦 芒霉素 艾夫他滨 腺苷基(3'-5')胞苷基(3'-5')胞苷游离酸 脱氧假尿苷 胸苷酰-(5'-3')-胸苷酰-(5'-3')-胸苷酰-(5'-3')-5'-胸苷酸 胰腺癌RX-3117 硫酸阿巴卡韦 甲基磷羧酸氢[(2S,5R)-5-(4-氨基-2-羰基嘧啶-1(2H)-基)-2,5-二氢呋喃-2-基]甲酯 瓶型酵母D 瓶型酵母A 环戊烯基尿嘧啶 水杨酸拉米呋啶 氟达拉滨EP杂质H 曲沙他滨 拉米夫定相关化合物(Α-TROXACITABINE) 拉米夫定杂质Ⅲ1-[(2R,5S)-2-羟甲基-1,3-氧硫杂环戊-5-基]-嘧啶-2,4(1H,3H)-酮 拉米夫定杂质1 拉米夫定S-氧化物(异构体混合物) 拉米夫定 拉米夫定 拉夫米定EP杂质J 拉夫米定EP杂质H 扎西他宾 恩替卡韦相关物质A 恩替卡韦一水合物 恩曲他滨杂质16 恩曲他滨S-氧化物 恩曲他滨 恩曲他滨 怀俄苷三乙酸酯 怀俄苷 己二酸,聚合1,2-丁二醇 外消旋拉米夫定酸 吡唑霉素 司他夫定 反式-阿巴卡韦盐酸盐 卡波啶 卡巴韦