摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-amino-9-[(2R,3R,4R,5R)-3-(3-aminopropoxy)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-purin-6-one | 165381-42-0

中文名称
——
中文别名
——
英文名称
2-amino-9-[(2R,3R,4R,5R)-3-(3-aminopropoxy)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-purin-6-one
英文别名
——
2-amino-9-[(2R,3R,4R,5R)-3-(3-aminopropoxy)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-purin-6-one化学式
CAS
165381-42-0
化学式
C13H20N6O5
mdl
——
分子量
340.339
InChiKey
LPKQTCRHAZMJAY-WOUKDFQISA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 密度:
    1.89±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -1.9
  • 重原子数:
    24
  • 可旋转键数:
    6
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.62
  • 拓扑面积:
    170
  • 氢给体数:
    5
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    2‘-O-Aminopropyl Ribonucleotides:  A Zwitterionic Modification That Enhances the Exonuclease Resistance and Biological Activity of Antisense Oligonucleotides
    摘要:
    Oligonucleotides containing 2'-O-aminopropyl-substituted RNA have been synthesized. The 2'-O-(aminopropyl)adenosine (APA), 2'-O-(aminopropyl)cytidine (APC), 2'-O-(aminopropyl)guanosine (APG), and 2'-O-(aminopropyl)uridine (APU) have been prepared in high yield from the ribonucleoside, protected, and incorporated into an oligonucleotide using conventional phosphoramidite chemistry. Molecular dynamics studies of a dinucleotide in water demonstrates that a short alkylamine located off the 2'-oxygen of ribonucleotides alters the sugar pucker of the nucleoside but does not form a tight ion pair with the proximate phosphate. A 5-mer with the sequence ACTUC has been characterized using NMR. As predicted from the modeling results, the sugar pucker of the APU moiety is shifted toward a C3'-endo geometry. In addition, the primary amine rotates freely and is not bound electrostatically to any phosphate group, as evidenced by the different sign of the NOE between sugar proton resonances and the signals from the propylamine chain. Incorporation of aminopropyl nucleoside residues into point-substituted and fully modified oligomers does not decrease the affinity for complementary RNA compared to 2'-O-alkyl substituents of the same length. However, two APU residues placed at the 3'-terminus of an oligomer gives a 100-fold increase in resistance to exonuclease degradation, which is greater than observed for phosphorothioate oligomers. These structural and biophysical characteristics make the 2'-O-aminopropyl group a leading choice for incorporation into antisense therapeutics. A 20-mer phosphorothioate oligonucleotide capped with two phosphodiester aminopropyl nucleotides targeted against C-raf mRNA has been transfected into cells via electroporation. This oligonucleotide has 5-10-fold greater activity than the control phosphorothioate for reducing the abundance of C-raf mRNA and protein.
    DOI:
    10.1021/jm950937o
  • 作为产物:
    描述:
    参考文献:
    名称:
    2‘-O-Aminopropyl Ribonucleotides:  A Zwitterionic Modification That Enhances the Exonuclease Resistance and Biological Activity of Antisense Oligonucleotides
    摘要:
    Oligonucleotides containing 2'-O-aminopropyl-substituted RNA have been synthesized. The 2'-O-(aminopropyl)adenosine (APA), 2'-O-(aminopropyl)cytidine (APC), 2'-O-(aminopropyl)guanosine (APG), and 2'-O-(aminopropyl)uridine (APU) have been prepared in high yield from the ribonucleoside, protected, and incorporated into an oligonucleotide using conventional phosphoramidite chemistry. Molecular dynamics studies of a dinucleotide in water demonstrates that a short alkylamine located off the 2'-oxygen of ribonucleotides alters the sugar pucker of the nucleoside but does not form a tight ion pair with the proximate phosphate. A 5-mer with the sequence ACTUC has been characterized using NMR. As predicted from the modeling results, the sugar pucker of the APU moiety is shifted toward a C3'-endo geometry. In addition, the primary amine rotates freely and is not bound electrostatically to any phosphate group, as evidenced by the different sign of the NOE between sugar proton resonances and the signals from the propylamine chain. Incorporation of aminopropyl nucleoside residues into point-substituted and fully modified oligomers does not decrease the affinity for complementary RNA compared to 2'-O-alkyl substituents of the same length. However, two APU residues placed at the 3'-terminus of an oligomer gives a 100-fold increase in resistance to exonuclease degradation, which is greater than observed for phosphorothioate oligomers. These structural and biophysical characteristics make the 2'-O-aminopropyl group a leading choice for incorporation into antisense therapeutics. A 20-mer phosphorothioate oligonucleotide capped with two phosphodiester aminopropyl nucleotides targeted against C-raf mRNA has been transfected into cells via electroporation. This oligonucleotide has 5-10-fold greater activity than the control phosphorothioate for reducing the abundance of C-raf mRNA and protein.
    DOI:
    10.1021/jm950937o
点击查看最新优质反应信息

文献信息

  • 2‘-<i>O</i>-Aminopropyl Ribonucleotides:  A Zwitterionic Modification That Enhances the Exonuclease Resistance and Biological Activity of Antisense Oligonucleotides
    作者:Richard H. Griffey、Brett P. Monia、Lendall L. Cummins、Susan Freier、Michael J. Greig、Charles J. Guinosso、Elena Lesnik、Sherilynn M. Manalili、Venkatraman Mohan、Steven Owens、Bruce R. Ross、Henri Sasmor、Ed Wancewicz、Kurt Weiler、Patrick D. Wheeler、P. Dan Cook
    DOI:10.1021/jm950937o
    日期:1996.1.1
    Oligonucleotides containing 2'-O-aminopropyl-substituted RNA have been synthesized. The 2'-O-(aminopropyl)adenosine (APA), 2'-O-(aminopropyl)cytidine (APC), 2'-O-(aminopropyl)guanosine (APG), and 2'-O-(aminopropyl)uridine (APU) have been prepared in high yield from the ribonucleoside, protected, and incorporated into an oligonucleotide using conventional phosphoramidite chemistry. Molecular dynamics studies of a dinucleotide in water demonstrates that a short alkylamine located off the 2'-oxygen of ribonucleotides alters the sugar pucker of the nucleoside but does not form a tight ion pair with the proximate phosphate. A 5-mer with the sequence ACTUC has been characterized using NMR. As predicted from the modeling results, the sugar pucker of the APU moiety is shifted toward a C3'-endo geometry. In addition, the primary amine rotates freely and is not bound electrostatically to any phosphate group, as evidenced by the different sign of the NOE between sugar proton resonances and the signals from the propylamine chain. Incorporation of aminopropyl nucleoside residues into point-substituted and fully modified oligomers does not decrease the affinity for complementary RNA compared to 2'-O-alkyl substituents of the same length. However, two APU residues placed at the 3'-terminus of an oligomer gives a 100-fold increase in resistance to exonuclease degradation, which is greater than observed for phosphorothioate oligomers. These structural and biophysical characteristics make the 2'-O-aminopropyl group a leading choice for incorporation into antisense therapeutics. A 20-mer phosphorothioate oligonucleotide capped with two phosphodiester aminopropyl nucleotides targeted against C-raf mRNA has been transfected into cells via electroporation. This oligonucleotide has 5-10-fold greater activity than the control phosphorothioate for reducing the abundance of C-raf mRNA and protein.
查看更多