摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-N-benzoyl-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)amine | 18918-50-8

中文名称
——
中文别名
——
英文名称
1-N-benzoyl-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)amine
英文别名
2,3,4,6-tetra-O-acetyl-N-benzoyl-β-D-glucopyranosylamine;N-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)benzamide;N-benzoyltetra-O-acetyl-β-D-glucopyranosylamin;Tetra-O-acetyl-N-benzoyl-β-D-glucopyranosylamin;N-(Tetraacetyl-1-β-D-glucopyranosyl)-benzamid;[(2R,3R,4S,5R,6R)-3,4,5-triacetyloxy-6-benzamidooxan-2-yl]methyl acetate
1-N-benzoyl-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)amine化学式
CAS
18918-50-8
化学式
C21H25NO10
mdl
——
分子量
451.43
InChiKey
HTKGZSJIRHIVAV-GQUPQBGVSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    190-192 °C
  • 沸点:
    582.6±50.0 °C(Predicted)
  • 密度:
    1.32±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    32
  • 可旋转键数:
    11
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.48
  • 拓扑面积:
    144
  • 氢给体数:
    1
  • 氢受体数:
    10

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-N-benzoyl-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)aminesodium methylate 作用下, 以 甲醇二氯甲烷 为溶剂, 反应 1.0h, 以95%的产率得到β-1-N-benzamido-D-glucopyranose
    参考文献:
    名称:
    使用硒代羧酸酯作为形成酰胺键的无痕迹试剂合成糖基酰胺
    摘要:
    从包括呋喃糖基和吡喃糖基衍生物在内的多种底物成功成功地制备了碳水化合物衍生的酰胺。该方法学成功地依赖于从Se / LiEt 3 BH和酰基氯或羧酸中原位生成硒酸锂锂,以及它们与糖叠氮化物的反应。本协议的一个关键方面是我们从元素硒开始。避免了所有反应性和敏感的含硒中间体的分离和处理,因此提供了硒代羧酸盐无痕试剂的状态。
    DOI:
    10.1021/acs.joc.6b00832
  • 作为产物:
    参考文献:
    名称:
    碳水化合物基支架的开发,用于限制识别基团的表达。二价配体的扩展及其对二聚受体结构的影响。
    摘要:
    已经通过NMR研究了糖基酰胺的溶液结构。与以Z-抗结构为主的仲芳族糖基酰胺相反,叔芳族糖基酰胺显示出对E-抗结构的强烈偏好。这些种类的分子表现出的结构多样性似乎很重要,因为芳香环或与芳香环相连的基团的方向性可以通过选择在异头中心处具有仲酰胺或叔酰胺来确定,并且可以在设计具有碳水化合物支架的生物活性分子时应予以考虑。还对相关的二价仲和叔糖基酰胺进行了结构分析,这些化合物显示出与单价化合物相似的偏好。受约束的二价化合物具有促进将形成具有受限结构的簇的潜力,因此对于多价配体的作用机理的新颖研究具有潜力。此类化合物的可能应用将用作支架的设计和合成,以促进蛋白质-蛋白质或其他受体-受体相互作用。设计成与识别碳水化合物的蛋白结合的限制性二价(或更高阶)配体的亲和力,其亲和力可能明显高于没有这些特性的单价对应物或多价配体,而后者会促进成簇并同时促进蛋白质-蛋白质相互作用。这可能是开发基于碳水化合物的疗法的一种新方法。
    DOI:
    10.1021/jo034336d
点击查看最新优质反应信息

文献信息

  • An easy access to anomeric glycosyl amides and imines(Schiff bases) via transformation of glycopyranosyl trimethylphosphinimides
    作者:László Kovács、Erzsébet Ősz、Valéria Domokos、Wolfgang Holzer、Zoltán Györgydeák
    DOI:10.1016/s0040-4020(01)00380-5
    日期:2001.5
    The preparation and application of anomeric glycosyl phosphinimides in preparative synthesis were studied. Starting from the appropriate glycosyl azides and trialkyl or triaryl phosphines, the corresponding phosphinimides were obtained by modified Staudinger reactions. The latter compounds were readily converted into 1-N-acyl-gluco- and galactopyranosyl amines with high yields by applying activated
    研究了异头糖基次膦酰亚胺的制备及在合成中的应用。从合适的糖基叠氮化物和三烷基或三芳基膦开始,通过改良的施陶丁格反应获得相应的亚膦酰亚胺。通过使用活化的酸衍生物或简单的羧酸,后一种化合物容易以高收率转化成1 - N-酰基-葡萄糖-和喃半乳糖基胺。通过杂-维蒂希反应分别使用脂族或芳族醛,获得1- N-亚烷基-亚芳基次膦酸或席夫碱(席夫碱)。
  • Synthesis of Glucopyranosyl Amides Using Polymer‐Supported Reagents
    作者:Yuriko Y. Root、Maximillian S. Bailor、Peter Norris
    DOI:10.1081/scc-120039504
    日期:2004.1.1
    Abstract 2,3,4,6‐Tetra‐O‐acetyl‐β‐D‐glucopyranosyl azide reacts efficiently with polymer‐supported triphenylphosphine and various acid chlorides to yield glucopyranosyl amides with retention of the β‐gluco stereochemistry.
    摘要 2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖叠氮化物聚合物负载的三苯基膦和各种酰有效反应,生成保留β-葡萄糖立体化学葡萄糖酰胺
  • Synthesis of a glucuronic acid and glucose conjugate library and evaluation of effects on endothelial cell growth
    作者:Nigel Pitt、Rhona M. Duane、Alan O' Brien、Helena Bradley、Stephen J. Wilson、Kathy M. O' Boyle、Paul V. Murphy
    DOI:10.1016/j.carres.2004.05.024
    日期:2004.8
    Compounds that alter endothelial cell growth are of interest in the development of angiogenesis modulators. A structurally diverse series of saccharide derivatives (glycosylamide conjugates) have been synthesized and evaluated for their effects on bovine aortic endothelial cell (BAEC) growth. Heparin-albumin (HA) reduced BAEC growth by 32% at 10 mug/mL and a number of the novel saccharide conjugates from the library were found to mimic the effect of HA as they also inhibit endothelial cell survival under identical conditions. Two thiophene conjugates, thioglucamide (24% inhibition at 35 muM) and a related glucuronide (26% inhibition at 33 muM) were the most potent inhibitors of BAEC growth, as determined using a methylthiazol tetrazoliurn (MTT) assay. The effects of thioglucamide and HA on absolute cell number were also studied using cell counting experiments; thioglucamide (47% after 24 h) was more potent than indicated by the MTT assay and initially reduced the BAEC number to a greater extent than HA (30% after 24 h); however, its actions were over more rapidly than were HA's as cell growth had returned to levels of the control after 72 h where HA still caused 25% inhibition. The binding of the monosaccharide conjugates to fibroblast growth factor (FGF-2) in competition with heparin-alburnin by ELISA was investigated to establish the possible mechanism by which glycoconjugates could alter growth but there was no general correlation between reduction in viable cell population and binding to FGF-2. No glycoconjugate reduced the proliferation of mouse mammary epithelial cells, nor did any alter gross cell morphology, supporting a proposal that the reduction in BAEC survival by monosaccharide conjugates such as thioglucamide is a result of the inhibition of cell proliferation rather than being an induction of cytotoxicity. These studies indicate that cell biological studies to determine the mechanism of action of the simple monosaccharide conjugates may be worthwhile. (C) 2004 Elsevier Ltd. All rights reserved.
  • Amide-1,2,3-triazole bioisosterism: the glycogen phosphorylase case
    作者:Evangelia D. Chrysina、Éva Bokor、Kyra-Melinda Alexacou、Maria-Despoina Charavgi、George N. Oikonomakos、Spyros E. Zographos、Demetres D. Leonidas、Nikos G. Oikonomakos、László Somsák
    DOI:10.1016/j.tetasy.2009.03.021
    日期:2009.5
    Per-O-acetylated beta-D-glucopyranosyl azide was transformed into an intermediate iminophosphorane by PMe3 which was then acylated to N-acyl-beta-D-glucopyranosylamines. The same azide and substituted acetylenes gave 1-(beta-D-glucopyranosyl)-4-substituted-1,2,3-triazoles in Cu(I)-catalyzed azide-alkyne cycloadditions. Deprotection of these products by the Zemplen method furnished beta-D-Glc(p)-NHCO-R derivatives as well as 1-(beta-D-Glc(p))-4-R-1,2,3-triazoles which were evaluated as inhibitors of rabbit muscle glycogen phosphorylase b. Pairs of amides versus triazoles with the same R group displayed similar inhibition constants. X-ray crystallographic studies on the enzyme-inhibitor complexes revealed high similarities in the binding of pairs with R = 2-naphthyl and hydroxymethyl, while for the R = Ph and 1-naphthyl compounds a different orientation of the aromatic part and changes in the conformation of the 280s loop were observed. By this study new examples of amide-1,2,3-triazole bioisosteric relationship have been provided. (C) 2009 Elsevier Ltd. All rights reserved.
  • Application of bis(diphenylphosphino)ethane (DPPE) in Staudinger-type N-glycopyranosyl amide synthesis
    作者:David P. Temelkoff、Craig R. Smith、Daniel A. Kibler、Shawn McKee、Sara J. Duncan、Matthias Zeller、Mo Hunsen、Peter Norris
    DOI:10.1016/j.carres.2006.02.001
    日期:2006.7
    Bis(diphenylphosphino)ethane (DPPE) reacts with pyranosyl azides derived from D-glucose and D-glucuronic acid in the presence of acid chlorides to yield the corresponding glycosyl amides. Reaction rates are comparable to those with triphenylphosphine, however, the byproduct phosphine oxide is easily removed from reaction mixtures using column chromatography. The simple and clean workup allows for the formation of collections of related compounds by parallel synthesis, and the method is also applicable to scaled-up reactions. The beta-stereochemistry of the glycosyl azide precursor is retained in all cases, which is supported by X-ray crystallography in several cases. (c) 2006 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸