摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

methyl (2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-(1->3)-[(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-(1->4)]-2-O-benzoyl-α-L-rhamnopyranoside | 311778-90-2

中文名称
——
中文别名
——
英文名称
methyl (2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-(1->3)-[(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-(1->4)]-2-O-benzoyl-α-L-rhamnopyranoside
英文别名
Bz(-2)[Bz(-3)][Bz(-4)]Rha(a1-3)[Bn(-2)[Bn(-3)][Bn(-4)][Bn(-6)]Glc(a1-4)][Bz(-2)]a-Rha1Me;[(2S,3S,4R,5R,6S)-4,5-dibenzoyloxy-6-[(2R,3R,4R,5S,6S)-3-benzoyloxy-2-methoxy-6-methyl-5-[(2R,3R,4S,5R,6R)-3,4,5-tris(phenylmethoxy)-6-(phenylmethoxymethyl)oxan-2-yl]oxyoxan-4-yl]oxy-2-methyloxan-3-yl] benzoate
methyl (2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-(1->3)-[(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-(1->4)]-2-O-benzoyl-α-L-rhamnopyranoside化学式
CAS
311778-90-2
化学式
C75H74O18
mdl
——
分子量
1263.4
InChiKey
QIFSDSMWMOQJNI-YVHWFHKMSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    12.3
  • 重原子数:
    93
  • 可旋转键数:
    30
  • 环数:
    11.0
  • sp3杂化的碳原子比例:
    0.31
  • 拓扑面积:
    198
  • 氢给体数:
    0
  • 氢受体数:
    18

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    methyl (2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-(1->3)-[(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-(1->4)]-2-O-benzoyl-α-L-rhamnopyranoside 在 palladium on activated charcoal 氢气 作用下, 以 乙醇溶剂黄146 为溶剂, 反应 72.0h, 以90%的产率得到methyl (2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl)-(1->3)-[(α-D-glucopyranosyl)-(1->4)]-2-O-benzoyl-α-L-rhamnopyranoside
    参考文献:
    名称:
    Synthesis of the Methyl Glycosides of a Di- and Two Trisaccharide Fragments Specific for theShigella flexneriSerotype 2aO-Antigen
    摘要:
    The stereocontrolled synthesis of methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranoside (EC, 1), methyl alpha-L-rhamnopyranosyl-(1-->3)-[alpha-D-glucopyra- osyl-(1-->4)]-alpha-L-rhamnopyranoside (B(E)C, 3) and methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside (ECD, 4) is described; these constitute the methyl glycosides of branched and linear fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a. Emphasis was put on the construction of the 1,2-cis EC glycosidic linkage resulting in the selection of 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl fluoride (8) as the donor. Condensation of methyl 2,3-O-isopropylidene-4-O-trimethylsilyloside-alpha-L-rhamnopyranoside (11) and 8 afforded the fully protected alpha E-disaccharide 20, as a common intermediate in the synthesis of 1 and 3, together with the corresponding beta E-anomer 21. Deacetalation and regioselective benzoylation of 20, followed by glycosylation with 2,3,4-tri-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (15) afforded the branched trisaccharide 25. Full deprotection of 20 and 25 afforded the targets 1 and 3, respectively. The corresponding beta E-disaccharide, namely, methyl beta-D-glucopyranosyl-(1-->4)-a-L-rhamnopyranoside (PEC, 2) was prepared analogously from 21. Two routes to trisaccharide 4 were considered. Route 1 involved the coupling of a precursor to residue E and a disaccharide CD. Route 2 was based on the condensation of an appropriate EC donor and a precursor to residue D. The former route afforded a 1:2 mixture of the alpha E and PE condensation products which could not be separated, neither at this stage, nor after deacetalation. In route 2, the required alpha E-anomer was isolated at the disaccharide stage and transformed into 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3-di-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (48) as the EC donor. Methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-beta-D-glucopyran-oside (19) was preferred to its benzylidene analogue as the precursor to residue D. Condensation of 19 and 48 and stepwise deprotection of the glycosylation product afforded the target 4.
    DOI:
    10.1080/07328300008544123
  • 作为产物:
    参考文献:
    名称:
    Synthesis of the Methyl Glycosides of a Di- and Two Trisaccharide Fragments Specific for theShigella flexneriSerotype 2aO-Antigen
    摘要:
    The stereocontrolled synthesis of methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranoside (EC, 1), methyl alpha-L-rhamnopyranosyl-(1-->3)-[alpha-D-glucopyra- osyl-(1-->4)]-alpha-L-rhamnopyranoside (B(E)C, 3) and methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside (ECD, 4) is described; these constitute the methyl glycosides of branched and linear fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a. Emphasis was put on the construction of the 1,2-cis EC glycosidic linkage resulting in the selection of 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl fluoride (8) as the donor. Condensation of methyl 2,3-O-isopropylidene-4-O-trimethylsilyloside-alpha-L-rhamnopyranoside (11) and 8 afforded the fully protected alpha E-disaccharide 20, as a common intermediate in the synthesis of 1 and 3, together with the corresponding beta E-anomer 21. Deacetalation and regioselective benzoylation of 20, followed by glycosylation with 2,3,4-tri-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (15) afforded the branched trisaccharide 25. Full deprotection of 20 and 25 afforded the targets 1 and 3, respectively. The corresponding beta E-disaccharide, namely, methyl beta-D-glucopyranosyl-(1-->4)-a-L-rhamnopyranoside (PEC, 2) was prepared analogously from 21. Two routes to trisaccharide 4 were considered. Route 1 involved the coupling of a precursor to residue E and a disaccharide CD. Route 2 was based on the condensation of an appropriate EC donor and a precursor to residue D. The former route afforded a 1:2 mixture of the alpha E and PE condensation products which could not be separated, neither at this stage, nor after deacetalation. In route 2, the required alpha E-anomer was isolated at the disaccharide stage and transformed into 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3-di-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (48) as the EC donor. Methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-beta-D-glucopyran-oside (19) was preferred to its benzylidene analogue as the precursor to residue D. Condensation of 19 and 48 and stepwise deprotection of the glycosylation product afforded the target 4.
    DOI:
    10.1080/07328300008544123
点击查看最新优质反应信息

文献信息

  • Synthesis of the Methyl Glycosides of a Di- and Two Trisaccharide Fragments Specific for the<i>Shigella flexneri</i>Serotype 2a<i>O</i>-Antigen
    作者:Laurence A. Mulard、Corina Costachel、Philippe J. Sansonetti
    DOI:10.1080/07328300008544123
    日期:2000.1
    The stereocontrolled synthesis of methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranoside (EC, 1), methyl alpha-L-rhamnopyranosyl-(1-->3)-[alpha-D-glucopyra- osyl-(1-->4)]-alpha-L-rhamnopyranoside (B(E)C, 3) and methyl alpha-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside (ECD, 4) is described; these constitute the methyl glycosides of branched and linear fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a. Emphasis was put on the construction of the 1,2-cis EC glycosidic linkage resulting in the selection of 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl fluoride (8) as the donor. Condensation of methyl 2,3-O-isopropylidene-4-O-trimethylsilyloside-alpha-L-rhamnopyranoside (11) and 8 afforded the fully protected alpha E-disaccharide 20, as a common intermediate in the synthesis of 1 and 3, together with the corresponding beta E-anomer 21. Deacetalation and regioselective benzoylation of 20, followed by glycosylation with 2,3,4-tri-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (15) afforded the branched trisaccharide 25. Full deprotection of 20 and 25 afforded the targets 1 and 3, respectively. The corresponding beta E-disaccharide, namely, methyl beta-D-glucopyranosyl-(1-->4)-a-L-rhamnopyranoside (PEC, 2) was prepared analogously from 21. Two routes to trisaccharide 4 were considered. Route 1 involved the coupling of a precursor to residue E and a disaccharide CD. Route 2 was based on the condensation of an appropriate EC donor and a precursor to residue D. The former route afforded a 1:2 mixture of the alpha E and PE condensation products which could not be separated, neither at this stage, nor after deacetalation. In route 2, the required alpha E-anomer was isolated at the disaccharide stage and transformed into 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3-di-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (48) as the EC donor. Methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-beta-D-glucopyran-oside (19) was preferred to its benzylidene analogue as the precursor to residue D. Condensation of 19 and 48 and stepwise deprotection of the glycosylation product afforded the target 4.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物