We report herein a visible light-mediated C-H hydroxyalkylation of quinolines and isoquinolines that proceeds via a radical path. The process exploits the excited-state reactivity of 4-acyl-1,4-dihydropyridines, which can readily generate acyl radicals upon blue light absorption. By avoiding the need for external oxidants, this radical-generating strategy enables a departure from the classical, oxidative
Photoredox neutral decarboxylative hydroxyalkylations of heteroarenes with α-keto acids under mild conditions are described. Stable and readily available α-keto acids were employed as hydroxyalkylating reagents with only CO2 released as the byproduct. A range of aromatic and aliphatic α-keto acids were successfully converted into hydroxyalkylated products with various heteroarenes. This transformation
With embedding of hydrogen atom transfer (HAT) moieties into the skeleton, covalentorganicframeworks (COFs) are endowed with facile generation of alkyl radicals and improved light harvesting abilities. The developed COFs were examined as robust photocatalysts for C−H functionalization.