4,6-O-[1-Cyano-2-(2-iodophenyl)ethylidene] Acetals. Improved Second-Generation Acetals for the Stereoselective Formation of β-d-Mannopyranosides and Regioselective Reductive Radical Fragmentation to β-d-Rhamnopyranosides. Scope and Limitations
摘要:
The [1-cyano-2-(2-iodophenyl)]ethylidene group is introduced as an acetal-protecting group for carbohydrate thioglycoside donors. The group is easily introduced under mild conditions, over short reaction times, and in the presence of a wide variety of other protecting groups by the reaction of the 4,6-diol with triethyl (2-iodophenyl)orthoacetate and camphorsulfonic acid, followed by trimethylsilyl cyanide and boron trifluoride etherate. The new protecting group conveys strong beta-selectivity with thiomannoside donors and undergoes a tin-mediated radical fragmentation to provide high yields of the synthetically challenging beta-rhamnopyranosides. The method is also applicable to the glucopyranosides when high beta-selectivity is observed in the coupling reaction and alpha-quinovosides are formed selectively in the radical fragmentation step. In the galactopyranoside series, beta-glycosides are formed selectively on coupling to donors protected by the new system, but the radical fragmentation is unselective and gives mixtures of the 4- and 6-deoxy products. Variable-temperature NMR studies for the glycosylation step, which helped define an optimal protocol, are described.
4,6-<i>O</i>-[1-Cyano-2-(2-iodophenyl)ethylidene] Acetals. Improved Second-Generation Acetals for the Stereoselective Formation of β-<scp>d</scp>-Mannopyranosides and Regioselective Reductive Radical Fragmentation to β-<scp>d</scp>-Rhamnopyranosides. Scope and Limitations
作者:David Crich、Albert A. Bowers
DOI:10.1021/jo0526688
日期:2006.4.1
The [1-cyano-2-(2-iodophenyl)]ethylidene group is introduced as an acetal-protecting group for carbohydrate thioglycoside donors. The group is easily introduced under mild conditions, over short reaction times, and in the presence of a wide variety of other protecting groups by the reaction of the 4,6-diol with triethyl (2-iodophenyl)orthoacetate and camphorsulfonic acid, followed by trimethylsilyl cyanide and boron trifluoride etherate. The new protecting group conveys strong beta-selectivity with thiomannoside donors and undergoes a tin-mediated radical fragmentation to provide high yields of the synthetically challenging beta-rhamnopyranosides. The method is also applicable to the glucopyranosides when high beta-selectivity is observed in the coupling reaction and alpha-quinovosides are formed selectively in the radical fragmentation step. In the galactopyranoside series, beta-glycosides are formed selectively on coupling to donors protected by the new system, but the radical fragmentation is unselective and gives mixtures of the 4- and 6-deoxy products. Variable-temperature NMR studies for the glycosylation step, which helped define an optimal protocol, are described.