The weak hydrosolubility of betulinic acid (3) hampers the clinical development of this natural anticancer agent. In order to circumvent this problem and to enhance the pharmacological properties of betulinic acid (3) and the lupane-type triterpenes lupeol (1), betulin (2), and methyl betulinate (7), glycosides (beta-D-glucosides, alpha-L-rhamnosides, and alpha-D-arabinosides) were synthesized and in vitro tested for cytotoxicity against three cancerous (A-549, DLD-1, and B16-F1) and one healthy (WS1) cell lines. The addition of a sugar moiety at the C-3 or C-28 position of betulin (2) resulted in a loss of cytotoxicity. In contrast, the 3-O-beta-D-glucosidation of lupeol (1) improved the activity by 7- to 12-fold (IC50 14-15.0 mu M). Moreover, the results showed that cancer cell lines are 8- to 12-fold more sensitive to the 3-O-alpha-L-rhamnopyranoside derivative of betulinic acid (IC50 2.6-3.9 mu M, 22) than the healthy cells (IC50 31 mu M). Thus, this study indicates that 3-O-glycosides of lupane-type triterpenoids represent an interesting class of potent in vitro cytotoxic agents. (c) 2006 Elsevier Ltd. All rights reserved.
TRITERPENES DERIVATIVES AND USES THEREOF AS ANTITUMOR AGENTS OR ANTI-INFLAMMATORY AGENTS
申请人:Pichette Andre
公开号:US20100331269A1
公开(公告)日:2010-12-30
A compound of formula (I):
wherein
R
1
is selected from the group consisting of H, α-L-Rhamnopyranose, α-D-Mannopyranose, β-D-Xylopyranose, β-D-Glucopyranose, and α-D-Arabinopyranose; R
2
is selected from CH
3
, COOH, CH
2
OH, COOCH
3
and CH
2
O-α-D-Arabinopyranose; with the proviso that the compound of formula (I) is not a compound of formula (I) wherein R
1
is β-D-Glucopyranose and R
2
is COOH; wherein R
1
is α-L-Rhamnopyranose and R
2
is CH
3
; wherein R
1
is β-D-Glucopyranose and R
2
is CH
2
OH; wherein R
1
is β-D-Xylopyranose and R
2
is CH
2
OH; wherein R
1
is α-L-Rhamnopyranose and R
2
is COOCH
3
, wherein R
1
is H and R
2
is CH
3
; wherein R
1
is H and R
2
is CH
2
OH; wherein R
1
is H and R
2
is COOH; or wherein R
1
is H and R
2
is COOCH
3
,
or a pharmaceutically acceptable salt thereof.