摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

methyl 4,6-O-para-nitrobenzylidene-α-D-glucopyranoside

中文名称
——
中文别名
——
英文名称
methyl 4,6-O-para-nitrobenzylidene-α-D-glucopyranoside
英文别名
methyl-4,6-O-(p-nitrobenzylidene)-α-D-glucopyranoside;methyl 4,6-O-[(4-nitrophenyl)methylene]-α-D-glucopyranoside;(4aR,6S,7R,8R,8aS)-6-methoxy-2-(4-nitrophenyl)-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol
methyl 4,6-O-para-nitrobenzylidene-α-D-glucopyranoside化学式
CAS
——
化学式
C14H17NO8
mdl
——
分子量
327.291
InChiKey
QDGVVAPLJLTAKK-BTZLDLHRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.3
  • 重原子数:
    23
  • 可旋转键数:
    2
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.57
  • 拓扑面积:
    123
  • 氢给体数:
    2
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    methyl 4,6-O-para-nitrobenzylidene-α-D-glucopyranosidedipotassium hydrogenphosphatetris(triphenylphosphine)ruthenium(II) chloride甲基硼酸 作用下, 以 甲苯 为溶剂, 反应 24.0h, 以31%的产率得到methyl-4,6-O-(p-nitrobenzylidene)-α-D-mannopyranoside
    参考文献:
    名称:
    Ru(II) 催化和硼介导的 1,2-反式二醇选择性差向异构化合成稀有糖的一般策略为 1,2-顺式二醇
    摘要:
    人聚糖主要由九种常见的糖组成部分组成。另一方面,已经在细菌中发现了数百种单糖,其中大多数不易获得。获得这些稀有糖和相应的糖缀合物的能力可以促进对细菌中各种重要的生物学过程的研究,包括微生物群与人类宿主之间的相互作用。许多稀有糖也存在于各种具有显着生物活性的天然产物和药物试剂中。尽管已经开发了几种用于合成稀有单糖的方法,但其中大多数都涉及冗长的步骤。在此处,反式二醇到 1,2-顺式二醇。硼酸酯的形成将平衡推向 1,2-顺式二醇产物,该产物可立即用于进一步的选择性功能化和糖基化。通过在天然产物或生物活性化合物中有效构建糖苷骨架,证明了该策略的实用性。
    DOI:
    10.1021/jacs.1c13399
  • 作为产物:
    描述:
    对硝基苯甲醛alpha-甲基葡萄糖甙硫酸 作用下, 反应 2.0h, 以77%的产率得到methyl 4,6-O-para-nitrobenzylidene-α-D-glucopyranoside
    参考文献:
    名称:
    Directing-protecting groups for carbohydrates. Design, conformational study, synthesis and application to regioselective functionalization
    摘要:
    A novel concept of regioselective transformation of secondary hydroxyl groups in carbohydrates is presented. First, the relative reactivity of the free hydroxyl groups of onoprotected D-glucose derivatives was assessed using acetylation as a model reaction. As a result, acylation of these polyols gave it mixture of monosubstituted products in which the 3-O functionalized derivatives predominated. Novel hydrogen bond acceptor protecting groups were next designed to modulate the 4-OH and 3-OH reactivity in the hope to mediate higher regioselective transformations. A molecular modeling study later validated by spectroscopic analysis predicted additional intramolecular hydrogen bonds between the hydroxyl groups and pyridyl-containing protecting groups. Taking advantage of this induced hydrogen bond network. we achieved regioselective acetylation of the hydroxyl group at position 3 without protecting any secondary hydroxyl groups of the carbohydrate moiety. This designed protecting/directing group increased the nucleophilicity and the steric hindrance of position 3. As a result, optimization of the reaction conditions enabled the monoacetylation (not affected by steric hindrance) of 6-O-protected,glucopyranosides at position 3 and selective silylation (affected by steric hindrance) of position 2 in high isolated yields and regioselectivities. This result certainly opens doors to the regioselective open glycosylation of carbohydrates. (c) 2005 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.tet.2005.04.060
点击查看最新优质反应信息

文献信息

  • Directing/protecting groups mediate highly regioselective glycosylation of monoprotected acceptors
    作者:Janice Lawandi、Sylvain Rocheleau、Nicolas Moitessier
    DOI:10.1016/j.tet.2011.07.026
    日期:2011.10
    A directing/protecting group designed for regioselective functionalization of partially-protected glucopyrannosides has been successfully used to prepare disaccharides in high yields. Most importantly, it has been demonstrated that highly regioselective and stereoselective glycosylation can be achieved when disarmed donors are employed. This study demonstrates the ability of directing/protecting group to induce regioselective glycosylation of carbohydrates and opens the field to the design of other DPGs for other monosaccharides. (C) 2011 Elsevier Ltd. All rights reserved.
  • Site-Selective Acylation of Carbohydrates Directed by Recyclable Polymer-Supported Isothiourea Catalysts
    作者:Wang-Ze Song、Yu-Bin Zheng、Jun-Hao Li、Ming Li、Kun Dong、Karim Ullah
    DOI:10.3987/com-18-14025
    日期:——
    The polystyrene-supported isothiourea catalysts, derived from the homogeneous catalyst BTMs, were synthesized and applied to the site-selective acylation of carbohydrates. The catalysts can be recovered and reused conveniently for 10 cycles without significantly loss in either activity or selectivity. It offers a sustainable and environmentally benign approach for the site-selective functionalization of carbohydrates.
  • Gronwald, Oliver; Shinkai, Seiji, Journal of the Chemical Society. Perkin Transactions 2 (2001), 2001, # 10, p. 1933 - 1937
    作者:Gronwald, Oliver、Shinkai, Seiji
    DOI:——
    日期:——
  • Directing-protecting groups for carbohydrates. Design, conformational study, synthesis and application to regioselective functionalization
    作者:Nicolas Moitessier、Pablo Englebienne、Yves Chapleur
    DOI:10.1016/j.tet.2005.04.060
    日期:2005.7
    A novel concept of regioselective transformation of secondary hydroxyl groups in carbohydrates is presented. First, the relative reactivity of the free hydroxyl groups of onoprotected D-glucose derivatives was assessed using acetylation as a model reaction. As a result, acylation of these polyols gave it mixture of monosubstituted products in which the 3-O functionalized derivatives predominated. Novel hydrogen bond acceptor protecting groups were next designed to modulate the 4-OH and 3-OH reactivity in the hope to mediate higher regioselective transformations. A molecular modeling study later validated by spectroscopic analysis predicted additional intramolecular hydrogen bonds between the hydroxyl groups and pyridyl-containing protecting groups. Taking advantage of this induced hydrogen bond network. we achieved regioselective acetylation of the hydroxyl group at position 3 without protecting any secondary hydroxyl groups of the carbohydrate moiety. This designed protecting/directing group increased the nucleophilicity and the steric hindrance of position 3. As a result, optimization of the reaction conditions enabled the monoacetylation (not affected by steric hindrance) of 6-O-protected,glucopyranosides at position 3 and selective silylation (affected by steric hindrance) of position 2 in high isolated yields and regioselectivities. This result certainly opens doors to the regioselective open glycosylation of carbohydrates. (c) 2005 Elsevier Ltd. All rights reserved.
  • General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2-<i>trans</i>-Diols to 1,2-<i>cis</i>-Diols
    作者:Xiaolei Li、Jicheng Wu、Weiping Tang
    DOI:10.1021/jacs.1c13399
    日期:2022.3.2
    Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters
    人聚糖主要由九种常见的糖组成部分组成。另一方面,已经在细菌中发现了数百种单糖,其中大多数不易获得。获得这些稀有糖和相应的糖缀合物的能力可以促进对细菌中各种重要的生物学过程的研究,包括微生物群与人类宿主之间的相互作用。许多稀有糖也存在于各种具有显着生物活性的天然产物和药物试剂中。尽管已经开发了几种用于合成稀有单糖的方法,但其中大多数都涉及冗长的步骤。在此处,反式二醇到 1,2-顺式二醇。硼酸酯的形成将平衡推向 1,2-顺式二醇产物,该产物可立即用于进一步的选择性功能化和糖基化。通过在天然产物或生物活性化合物中有效构建糖苷骨架,证明了该策略的实用性。
查看更多

同类化合物

苯甲基-2-乙酰氨基-4,6-O-苯亚甲基-2-脱氧-Alpha-D-吡喃葡萄糖苷 苯-1,2-二基二(磷羧酸酯) 苄基N-乙酰基-4,6-O-亚苄基-alpha-异胞壁酸 苄基4-氰基-4-脱氧-2,3-O-[(1S,2S)-1,2-二甲氧基-1,2-二甲基-1,2-乙二基]-beta-D-阿拉伯糖吡喃糖苷 苄基4,6-O-亚苄基吡喃己糖苷 苄基3-O-苄基-4,6-O-亚苄基吡喃己糖苷 苄基2-乙酰氨基-4,6-O-亚苄基-3-O-(羧甲基)-2-脱氧吡喃己糖苷 苄基(5Xi)-2-乙酰氨基-2-脱氧-4,6-O-异亚丙基-alpha-D-来苏-吡喃己糖苷 苄基 4,6-O-亚苄基-beta-D-吡喃半乳糖苷 苄基 4,6-O-亚苄基-alpha-D-吡喃半乳糖苷 苄基 4,6-O-亚苄基-2,3-二-O-苄基-alpha-D-吡喃半乳糖苷 苄基 2-乙酰氨基-2-脱氧-4,6-O-异亚丙基-beta-D-吡喃葡萄糖苷 苄基 2-乙酰氨基-2-脱氧-4,6-O-亚苄基-alpha-D-吡喃半乳糖苷 苄基 2-O-苄基-4,6-O-亚苄基-alpha-D-吡喃甘露糖苷 苄基 2,3-二-O-苄基-4,6-O-亚苄基-beta-D-吡喃葡萄糖苷 苄基 2,3-二-O-(苯基甲基)-4,6-O-(苯基亚甲基)-ALPHA-D-吡喃甘露糖苷 甲基4-O,6-O-(苯基亚甲基)-2,3-二脱氧-alpha-D-赤式-吡喃己糖苷 甲基4,6-O-异亚丙基吡喃己糖苷 甲基4,6-O-异亚丙基-beta-D-吡喃半乳糖苷 甲基4,6-O-亚苄基-3-脱氧-3-硝基-beta-D-吡喃葡萄糖苷 甲基4,6-O-亚乙基-alpha-D-吡喃葡萄糖苷 甲基4,6-O-[(4-甲氧基苯基)亚甲基]-2,3-二-O-(苯基甲基)-ALPHA-D-吡喃葡萄糖苷 甲基4,6-O-[(4-甲氧基苯基)亚甲基]-2,3-二-O-(苯基甲基)-ALPHA-D-吡喃半乳糖苷 甲基3-O-苯甲酰基-4,6-O-亚苄基-beta-D-吡喃半乳糖苷 甲基3-O-苯甲酰基-4,6-O-亚苄基-alpha-D-吡喃葡萄糖苷 甲基2.3-二-O-苯甲酸基-4,6-O-亚苄基-β-D-喃葡萄苷 甲基2-乙酰氨基-4,6-O-亚苄基-2-脱氧吡喃己糖苷 甲基2-O-烯丙基-3-O-苄基-4,6-O-亚苄基吡喃己糖苷 甲基2,3-O-二烯丙基-4,6-O-亚苄基-alpha-D-吡喃甘露糖苷 甲基-4,6-O-亚苄基-Α-D-吡喃葡糖苷 甲基-2,3-二-O-苯甲酰基-4,6-O-苯亚甲基-α-D-吡喃葡萄糖苷 甲基 4,6-O-亚苄基-β-D-吡喃葡萄糖苷 甲基 4,6-O-亚苄基-3-O-甲基-alpha-D-吡喃甘露糖苷 甲基 4,6-O-(苯基亚甲基)-alpha-D-吡喃葡萄糖苷 2-苯甲酸酯 甲基 4,6-O-(苯基亚甲基)-ALPHA-D-吡喃半乳糖苷二乙酸酯 甲基 3-O-苯甲酰基-4,6-O-亚苄基-beta-D-吡喃甘露糖苷 甲基 3-O-烯丙基-4,6-O-亚苄基-alpha-D-吡喃甘露糖苷 甲基 2,3-二苯甲酰-4,6-O-亚苄基-beta-D-吡喃半乳糖苷 烯丙基-4,6-O-苯亚甲基-α-D-吡喃葡萄糖苷 烯丙基-4,6-O-亚苄基-beta-D-吡喃葡萄糖苷 山海绵酰胺A 对硝基苯基 2-乙酰氨基-4,6-O-亚苄基-2-脱氧-beta-D-吡喃葡萄糖苷 亚苄基葡萄糖 二甲基二烯丙基氯化铵-丙烯酰胺共聚物 乙基 4,6-O-亚苄基吡喃己糖苷 N-乙酰基-1-O-苄基-4,6-O-(亚苄基)-alpha-异胞壁酸甲酯 N-乙酰基-1-O-(苯基甲基)-4,6-O-(苯基亚甲基)-ALPHA-胞壁酸 N-[(4aR,6R,7R,8R,8aS)-6-苄氧基-8-羟基-2-苯基-4,4A,6,7,8,8A-六氢吡喃并[5,6-d][1,3]二恶英-7-基]乙酰胺 N-(6-烯丙氧基-8-羟基-2-苯基-4,4a,6,7,8,8a-六氢吡喃并[5,6-d][1,3]二恶英-7-基)乙酰胺 N-(6-烯丙氧基-8-羟基-2-苯基-4,4A,6,7,8,8A-六氢吡喃并[5,6-d][1,3]二恶英-7-基)乙酰胺