作者:Matthew H. Lyttle、Apparao Satyam、Michael D. Hocker、Karin E. Bauer、Colby G. Caldwell、Hon C. Hui、Amy S. Morgan、Alemayehu Mergia、Lawrence M. Kauvar
DOI:10.1021/jm00036a016
日期:1994.5
Alkylating agents which are activated by glutathione-S-transferases (GSTs) have been designed and synthesized. The model compound gamma-glutamyl-alpha-amino-beta-[(2-ethyl N,N,N',N'-tetraethylphosphorodiamidate)sulfonyl]propionylglycine (1) and the nitrogen mustards gamma-glutamyl-alpha-amino-beta- [[2-ethyl N,N,N',N'-tetrakis(2-chloroethyl)phosphorodiamidate]sulfonyl]propionylglycine (2) and gamma-glutamyl-alpha-amino-beta-[[2-ethyl-N,N,N',N'-tetrakis(2-chloroethyl)phosphorodiamidate]sulfonyl]propionyl-(R)-(-)-phenylglycine (3) were prepared via multistep chemical synthesis. The compounds were tested with recombinant human A1-1, M1a-1a and P1-1 GSTs. HPLC studies showed that the compounds were differentially and catalytically cleaved by biologically relevant concentrations of the GSTs. Mass spectral studies of the cleavage mixture of 2 showed that M1a-1a GST liberated the cytotoxic phosphate moiety needed for efficacy as an alkylating agent. Cell culture studies with MCF-7 breast cancer cells showed that 1 was not toxic at 200 mu M, while 2 and 3 showed IC(50)s of 40.6 and 37.5 mu M, respectively, for the same cell line. MCF-7 cells transfected to overexpress P1-1 GST showed enhanced sensitivity with 2 and 3, with IC(50)s of 20.9 and 9.5 mu M, respectively. This result correlates well with the rates of cleavage of 2 and 3 by P1-1 GST observed in vitro and demonstrates that higher levels of cellular P1-1 GST will give increased sensitivity to these drugs.