Cobalt(II)chloride catalysed cleavage of ethers with acyl halides: Scope and mechanism
作者:Javed Iqbal、Rajiv Ranjan Srivastava
DOI:10.1016/s0040-4020(01)96041-7
日期:1991.5
Cobalt (II) chloride in acetonitrile catalyses the cleavage of a wide variety of ethers with acyl halides under mild conditions to give the corresponding esters in good yields. Acyclic aliphatic ethers are cleaved to the corresponding ester and chlorides whereas the cyclic aliphatic ethers give rise to the ω-chloroesters. The benzyl ethers can be converted to the corresponding esters along with the
乙腈中的氯化钴(II)在温和的条件下催化多种醚与酰基卤的裂解,从而以高收率得到相应的酯。无环脂族醚裂解成相应的酯和氯化物,而环脂族醚产生ω-氯代酯。苄基醚可与苄基氯和苄基乙酰胺一起形成相应的酯。烯丙基和苄基醚裂解的比较研究表明,苄基醚可以在烯丙基醚存在下选择性裂解。可以以高度区域选择性的方式将环氧乙烷酮裂解为相应的β-氯代酯。乙烯基醚经历sp 2在这些条件下的-杂化的碳-氧键裂解。基于产物分析,讨论了涉及电子转移,随后进行O-酰化以及氯离子对S N 1或S N 2的攻击的机理。
Organoleptic compound
申请人:Payne Richard K.
公开号:US08772533B1
公开(公告)日:2014-07-08
The present invention is directed to a novel compound, but-2-enoic acid 1-ethyl-2-methyl-propyl ester, and a method of improving, enhancing or modifying a fragrance formulation through the addition of an olfactory acceptable amount of but-2-enoic acid 1-ethyl-2-methyl-propyl ester.
[EN] SYNTHESIS OF CYCLIC ORGANIC COMPOUNDS AND METALLOCENES<br/>[FR] SYNTHÈSE DE COMPOSÉS ORGANIQUES CYCLIQUES ET DE MÉTALLOCÈNES
申请人:UNIVATION TECH LLC
公开号:WO2019067271A1
公开(公告)日:2019-04-04
A method comprising synthesizing a cyclic organic compound via reaction of an unsubstituted or substituted cyclohexene with an unsubstituted or substituted acrylic acid in the presence of phosphoric and/or sulfonic acid reagent to make the cyclic organic compound. Also, a method of synthesizing a ligand for a transition metal, and a related substituted ligand-metal complex and catalyst, from the unsubstituted or substituted cyclohexene and unsubstituted or substituted acrylic acid. Also, the cyclic organic compound, ligand, and substituted ligand-metal complex and catalyst synthesized thereby. Also a method of polymerizing an olefin with the catalyst to give a polyolefin, and the polyolefin made thereby.
Arylboronic acids underwent the conjugate 1,4-addition to alpha, beta-unsaturated esters to give beta-aryl esters in high yields in the presence of a rhodium(I) catalyst. The addition of arylboronic acids to isopropyl crotonate resulted in high yields and high enantioselectivity exceeding 90% ee in the presence of 3 mol % of Rh(acac)(C(2)H(4))(2) and (S)-binap at 100 degrees C. The rhodium/(S)-binap