摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

三氯卡班 | 101-20-2

中文名称
三氯卡班
中文别名
康洁新;三氯均二苯脲;三氯卡巴;三氯卡斑防腐剂;三氯苯脲;-三氯二苯脲;保肤洁;N-(4-氯苯基)-N'-(3,4-二氯苯基)脲;N-(4-氯苯基)-N’-(3,4-二氯苯基)脲;3,4,4"-三氯均二苯脲;3,4,4-三氯对称二苯脲;TCC;3,4,4
英文名称
3,4,4'-trichlorocarbanilide
英文别名
triclocarban;TCC;3-(4-chlorophenyl)-1-(3,4-dichlorophenyl)urea;3,4,4'-Trichlorcarbanilid;N-(-4-chlorophenyl)-N'-(3,4-dichlorophenyl)urea;1-(3',4'-dichlorophenyl)-3-(4'-chlorophenyl)urea;1-(4-chlorophenyl)-3-(3,4-dichlorophenyl)urea;3-(4-chlorophenyl)-1-(3,4-dichlorphenyl)urea;trichlorocarbanilide
三氯卡班化学式
CAS
101-20-2
化学式
C13H9Cl3N2O
mdl
MFCD00013254
分子量
315.586
InChiKey
ICUTUKXCWQYESQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    254-256 °C (lit.)
  • 沸点:
    344.2±42.0 °C(Predicted)
  • 密度:
    1.5732 (rough estimate)
  • 闪点:
    150 °C
  • 溶解度:
    可溶于甲醇:
  • LogP:
    3.633 at 25℃
  • 物理描述:
    Triclocarban appears as fine white plates or white powder. (NTP, 1992)
  • 颜色/状态:
    Fine white plates
  • 气味:
    Slight, characteristic odor
  • 蒸汽压力:
    3.6X10-9 mm Hg at 25 °C (est)
  • 稳定性/保质期:
    Stable under recommended storage conditions.
  • 分解:
    Hazardous decomposition products formed under fire conditions - Carbon oxides, nitrogen oxides (NOx), hydrogen chloride gas.
  • 解离常数:
    pKa = 12.7

计算性质

  • 辛醇/水分配系数(LogP):
    5.3
  • 重原子数:
    19
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    41.1
  • 氢给体数:
    2
  • 氢受体数:
    1

ADMET

代谢
血液中的三氯卡班水平在静脉注射后较低,放射性活度和化学测定的比较表明三氯卡班代谢迅速。人体对TCC的代谢涉及直接葡萄糖苷酸化形成N-和N'-葡萄糖苷酸,以及环羟基化形成2'-羟基-TCC和6-羟基-TCC,这些代谢物进一步转化为硫酸盐和葡萄糖苷酸结合物。在接受单次口服TCC的人类受试者中,80小时内约27%的剂量通过尿液排出。大约70%的给药剂量在5天内通过粪便排出。主要的尿液代谢物是N-葡萄糖苷酸(平均水平,30 ng/mL),主要的血浆代谢物是2'-OH-TCC的硫酸盐结合物(水平范围从0-20 ng/mL)。血浆中最高水平出现在给药后2.8小时,为每克血浆3.7 nmol当量的TCC(大约1.2 ppm)。TCC的生物转化迅速,但似乎不涉及基本TCC结构的分裂。主要的血浆代谢物是TCC的N-和N'-葡萄糖苷酸,它们在大约2小时的一半时间内被排出到尿液中,而2'-羟基-TCC硫酸盐和6-羟基-TCC硫酸盐(o-羟基-TCC硫酸盐)在大约20小时的一半时间内被移除(可能是进入胆汁)。
Blood levels after parenteral injection are low and comparison of the radioactivity and chemical determinations suggest rapid metabolism of the Triclocarban. Human metabolism of TCC involves direct glucuronidation to form N- and N'- glucuronides as well as ring hydroxylation to 2'-hydroxy-TCC and 6-hydroxy-TCC, which are further metabolized to sulfate and glucuronide conjugates. In human subjects given a single oral dose of TCC, 27% of the dose was excreted in the urine within 80 hours. About 70% of the administered dose was excreted in the feces within 5 days. The major urinary metabolites were N-glucuronides (average levels, 30 ng/mL) and a major plasma metabolite was the sulfate conjugate of 2'-OH-TCC (levels ranged from 0-20 ng/mL. The maximum plasma level occurred 2.8 hr after dosing and was 3.7 nmol-equivalents of TCC per g of plasma (approximately 1.2 ppm). Biotransformation of TCC was rapid but did not appear to involve splitting of the basic TCC structure. The major plasma metabolites were N- and N'-glucuronides of TCC which were eliminated with half-life approximately 2 hr to the urine and 2'-hydroxy-TCC sulfate and 6-hydroxy-TCC sulfate (the o-hydroxy-TCC sulfates) which were removed with half life approximately 20 hr (presumably into the bile).
来源:DrugBank
代谢
(14)C-TCC (3,4,4'-三氯碳酰亚胺) 在人体内经口暴露于2.2微摩尔/千克体重后的代谢和分布已经得到评估。给药120小时后,粪便排泄(剂量的70%)完成,尿液排泄(剂量的27%)在80小时内完成。... TCC的生物转化是迅速的,但似乎并不涉及TCC基本结构的裂解。主要的血浆代谢物是TCC的N-和N'-葡萄糖苷酸,它们在大约2小时的一半时间内被排泄到尿液中,以及2'-羟基-TCC硫酸盐和6-羟基-TCC硫酸盐(o-羟基-TCC硫酸盐),它们在大约20小时的一半时间内被移除(可能是进入胆汁)。...
The metabolism and disposition of (14)C-TCC (3,4,4'-trichlorocarbanilide) have been evaluated in humans following oral exposure to 2.2 umol/kg body wt. Fecal elimination (70% of dose) was complete 120 hr after dosing and the urinary excretion (27% of dose) was completed in 80 hr. ... Biotransformation of TCC was rapid but did not appear to involve splitting of the basic TCC structure. The major plasma metabolites were N- and N'-glucuronides of TCC which were eliminated with half life approximately 2 hr to the urine and 2'-hydroxy-TCC sulfate and 6-hydroxy-TCC sulfate (the o-hydroxy-TCC sulfates) which were removed with half life approximately 20 hr (presumably into the bile). ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
植物对新兴有机污染物的吸收和代谢,如个人护理产品,对人类健康构成潜在风险。在这项研究中,将培养在水培介质中的辣椒(Capsicum annuum)植物暴露于(14)C标记和无标记的三氯卡班(TCC),以研究植物吸收后TCC的积累、分布和代谢。结果表明,TCC在所有植物组织中均可检测到;12周后,根、茎、叶和果实组织中的TCC浓度分别为19.74 +/- 2.26、0.26 +/- 0.04、0.11 +/- 0.01和0.03 +/- 0.01 mg/kg干重。更重要的是,植物吸收的TCC中有很大一部分被代谢,尤其是在茎、叶和果实中。羟基化的TCC(例如,2'-OH TCC和6-OH TCC)和糖基化的OH-TCC分别是植物组织中的主要I相和II相代谢物。在根、茎、叶和果实中,结合的(或不可提取的)TCC残留物分别占所有积累的TCC物种的大约44.6%、85.6%、69.0%和47.5%。12周后,辣椒植物地上组织中TCC代谢物的浓度是TCC浓度的20倍以上;关键的是,果实中大约95.6%的TCC以代谢物的形式存在。因此,考虑到植物代谢作用,通过食用辣椒果实对TCC的人类暴露预期会显著增加。
Plant uptake and metabolism of emerging organic contaminants, such as personal-care products, pose potential risks to human health. In this study, jalapeno pepper (Capsicum annuum) plants cultured in hydroponic media were exposed to both (14)C-labeled and unlabeled triclocarban (TCC) to investigate the accumulation, distribution, and metabolism of TCC following plant uptake. The results revealed that TCC was detected in all plant tissues; after 12 weeks, the TCC concentrations in root, stem, leaf, and fruit tissues were 19.74 +/- 2.26, 0.26 +/- 0.04, 0.11 +/- 0.01, and 0.03 +/- 0.01 mg/kg dry weight, respectively. More importantly, a substantial portion of the TCC taken up by plants was metabolized, especially in the stems, leaves, and fruits. Hydroxylated TCC (e.g., 2'-OH TCC and 6-OH TCC) and glycosylated OH-TCC were the main phase I and phase II metabolites in plant tissues, respectively. Bound (or nonextractable) residues of TCC accounted for approximately 44.6, 85.6, 69.0, and 47.5% of all TCC species that accumulated in roots, stems, leaves, and fruits, respectively. The concentrations of TCC metabolites were more than 20 times greater than the concentrations of TCC in the above-ground tissues of the jalapeno pepper plants after 12 weeks; crucially, approximately 95.6% of the TCC was present as metabolites in the fruits. Consequently, human exposure to TCC through the consumption of pepper fruits is expected to be substantially higher when phytometabolism is considered.
来源:Hazardous Substances Data Bank (HSDB)
代谢
先前对三氯卡班的研究表明,其生物转化可能会产生反应性代谢物,形成蛋白质加合物。由于皮肤是三氯卡班暴露的主要途径,目前的研究在培养的人类角质形成细胞中探讨了这种可能性。结果提供了证据,当细胞中的细胞色素P450活性被2,3,7,8-四氯二苯并-p-二恶英诱导时,这是一种模型Ah受体配体,会发生相当大的生物转化和蛋白质加合物的形成。由于在细胞和组织中检测低加合物水平是困难的,我们为此目的采用了新颖的加速器质谱法。利用该方法的敏感性,我们证明了在所采用的P450诱导条件下,大量的三氯卡班与角质形成细胞蛋白质形成加合物。
Previous studies of triclocarban suggest that its biotransformation could yield reactive metabolites that form protein adducts. Since the skin is the major route of triclocarban exposure, present work examined this possibility in cultured human keratinocytes. The results provide evidence for considerable biotransformation and protein adduct formation when cytochrome P450 activity is induced in the cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a model Ah receptor ligand. Since detecting low adduct levels in cells and tissues is difficult, we utilized the novel approach of accelerator mass spectrometry for this purpose. Exploiting the sensitivity of the method, we demonstrated that a substantial portion of triclocarban forms adducts with keratinocyte protein under the P450 inducing conditions employed.
来源:Hazardous Substances Data Bank (HSDB)
代谢
... 经过多次口服给药3,4,4'-三氯卡班(TCC)... 胆汁代谢物...被分离和鉴定。主要的TCC胆汁代谢物被确定为2'-羟基-TCC。这种化合物主要从非结合和葡萄糖醛酸苷部分分离得到。其他大量存在的代谢物是6-羟基-TCC和2',6-二羟基-TCC,主要是葡萄糖醛酸苷形式,以及3'-羟基-TCC,主要是硫酸盐结合物。从每个部分中分离出少量3',6-二羟基-TCC。胆汁中没有发现未改变的TCC。只发现了其他代谢物的痕迹,没有观察到N-羟基化产物。...
... After repeated oral administration of 3,4,4'-trichlorocarbanilide (TCC) ... the biliary metabolites ... were isolated and identified. The major TCC biliary metabolite was found to be 2'-hydroxy-TCC. This compound was isolated mainly from the nonconjugated and the glucuronide fractions. Other metabolites present in substantial quantities were 6-hydroxy-TCC and 2',6-dihydroxy-TCC mainly as glucuronides and 3'-hydroxy-TCC mainly as the sulfate conjugate. Small amounts of 3',6-dihydroxy-TCC were isolated from each of the fractions. No unchanged TCC was found in the bile. Only traces of other metabolites were found, and no N-hydroxylated products were observed. ...
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
三氯卡班(TCC)是一种固态物质。它具有抗菌活性,并在全球范围内广泛应用于包括除臭香皂、洗涤剂、清洁乳液和湿巾在内的多种个人清洁产品中。在北美,TCC仅作为抗菌剂和防腐剂用于条状和液体香皂以及沐浴露中。人体研究:人体研究表明,没有证据表明TCC会引起皮肤过敏或严重刺激。将含有0、1、3、6和9% TCC的石蜡油(0.1mL)连续21天涂抹在十名男性身上。观察到9%浓度的TCC有最小的皮肤刺激性。在志愿者测试中,TCC(1.5%和10%)没有证据表明会引起皮肤过敏。研究了TCC暴露对胎儿异常的影响,研究对象为39名被诊断出胎儿或出生后异常的孕妇。在异常分娩的母亲中,母体血清中TCC的水平显著升高。还研究了TCC的内分泌干扰效应。TCC通过在ER报告基因分析中诱导荧光素酶活性,促进MCF-7细胞增殖,上调pS2的表达,并在MCF-7细胞中在mRNA和蛋白质水平上下调ERalpha表达,表现出雌激素样活性。在前列腺癌来源的LNCaP和C4-2B细胞中,TCC通过雄激素受体依赖性作用增强了雄激素的作用。动物研究:TCC对豚鼠和兔子的皮肤无刺激性。TCC没有在豚鼠中引起皮肤过敏。在4%的浓度下,TCC在豚鼠中没有表现出光过敏性。在兔子的眼睛中,TCC在冲洗组中没有引起可辨别的刺激,在未冲洗组中仅引起轻微刺激。在为期两年的慢性喂养研究中,将TCC以0、25、75和250 mg/kg bw/day的剂量水平测试了每组80只Sprague Dawley大鼠。与对照组相比,雄性在250 mg/kg bw/day和雌性在75和250 mg/kg bw/day的剂量下,在整个研究期间的大部分时间内体重略有减轻。在75和250 mg/kg bw/day的雄性以及250 mg/kg bw/day的雌性中观察到贫血。血液化学分析显示,高剂量雄性在各个时间点碱性磷酸酶、血尿素氮、葡萄糖和总胆红素略有增加。没有证据表明在任何部位有剂量相关的肿瘤发生率增加。还进行了三代繁殖研究,测试了TCC对大鼠的长期影响。在最高TCC剂量水平下,F0代的后代出生时活产仔数低于对照组。在F1和F2代中没有观察到类似的趋势。已经证明TCC能够在体外增强睾酮诱导的效应,并增大去势雄性大鼠的附属性器官。在CHO细胞的染色体结构畸变和数量畸变诱导方面,TCC呈阴性。在Ames试验( Salmonella typhimurium TA98、TA100、TA1535和TA 1537菌株)中,无论是否经过代谢激活,TCC被认为不具有致突变性。生态毒性研究:TCC已在水生生态系统中被检测到,毒性研究结果表明对环境存在潜在风险。TCC对秀丽隐杆线虫(Caenorhabditis elegans)产生了全身性毒性效应。TCC也对鱼类在接近或等于地表水中测量浓度的条件下具有生殖毒性。研究了TCC对单性生殖轮虫(Brachionus koreanus)的死亡率、种群生长、寿命和繁殖力的影响,以及细胞ROS水平、GST酶活性和防御素基因表达的变化。在TCC暴露的B. koreanus中,观察到生长迟缓和繁殖力降低,这表明对B. koreanus的生命周期有潜在的有害影响。此外,还显示TCC暴露后ROS含量和GST酶活性随时间增加。在新西兰泥螺(Potamopyrgus antipodarum)的繁殖试验中,TCC在所有测试浓度下都显著增加了胚胎数量,除了0.170 ug/L的组。TCC抑制了T. thermophila的生长,并在暴露TCC 2小时后观察到质膜损伤。值得注意的是,在环境相关浓度(1.0 ug/L)下,TCC可以导致Tetrahymena thermophila的DNA损伤统计学上显著增加,而生长抑制和细胞活力变化无法观察到。在淡水泥螺(Potamopyrgus antipodarum)四周后,环境相关的TCC浓度(1.6至10.5 ug/L)导致未包壳胚胎数量显著增加,而0.2、1.6和10.5 ug/L的暴露显著增加了包壳胚胎的数量。
IDENTIFICATION AND USE: Triclocarban (TCC) is a solid. It has anti-microbial activity and is used globally in a wide range of personal cleansing products that include deodorant soaps, detergents, cleansing lotions, and wipes. In North America, TCC is used exclusively as an antimicrobial and preservative in bar and liquid soaps and body washes. HUMAN STUDIES: Studies in humans indicate no evidence of skin sensitization or severe irritation. Petrolatum (0.1mL) containing 0, 1, 3, 6, and 9% TCC was applied continuously for 21 days on ten males. Minimal skin irritation was observed with the 9% concentration. There was no evidence of skin sensitization in volunteers tested with TCC (1.5% and 10%). The potential impact of exposure to TCC on fetal abnormalities was studied in 39 pregnant women diagnosed with fetal or post-birth abnormalities. Significantly increased levels of TCC were detected in maternal sera from mothers with abnormal births. TCC was also studied for its endocrine-disrupting effects. TCC exerted estrogenic activities by inducing luciferase activities in an ER reporter gene assay, promoting the proliferation of the MCF-7 cells, up-regulating the expression of pS2 and down-regulating ERalpha expression at both the mRNA and protein levels in the MCF-7 cells. In prostate cancer-derived LNCaP and C4-2B cells, TCC potentiated androgen actions via androgen receptor-dependent actions. ANIMAL STUDIES: TCC was non-irritating to guinea pig and rabbit skin. TCC did not cause skin sensitization in guinea pigs. At a concentration of 4% TCC did not exhibit a photoallergic activity in guinea pigs. In rabbit eyes, TCC caused no discernable irritation in the rinsed group and was only mildly irritating in the un-rinsed group. TCC was tested in groups of 80 Sprague Dawley rats per sex in a two year chronic feeding study at dose levels of 0, 25, 75 and 250 mg/kg bw/day. Mean body weight of males at 250 mg/kg bw/day and females at 75 and 250 mg/kg bw/day were slightly reduced compared to controls during most of the study. Anemia was seen in males at 75 and 250 mg/kg bw/day and females at 250 mg/kg bw/day. Blood chemistry analysis showed a slight increase in alkaline phosphatase, blood urea nitrogen, glucose and total bilirubin at various time points for the high-dose males. There was no evidence for dose-related increases in tumor incidence at any site. The long-term effect to rats of TCC was also tested in a three-generation reproduction study. At the highest TCC dose level, the mean number of live pups at birth was lower than controls in the litters for the F0 generation. A similar trend was not observed in the F1 and F2 generation. TCC has been shown to enhance testosterone-induced effects in vitro and to enlarge accessory sex organs in castrated male rats. TCC was negative for the induction of structural and numerical chromosome aberrations in CHO cells. TCC was considered not to be mutagenic with and without metabolic activation in the Ames test (Salmonella typhimurium strains TA98, TA100, TA1535 and TA 1537). ECOTOXICITY STUDIES: TCC has been detected in aquatic ecosystems and the results of toxicity studies indicate a potential risk to the environment. TCC induced systemic toxic effects in nematode Caenorhabditis elegans. TCC was also reproductively toxic to fish at concentrations at or near those that have been measured in surface water. The effects of TCC on mortality, population growth, lifespan, and fecundity were examined in the monogonont rotifer (Brachionus koreanus) using cellular ROS levels, GST enzymatic activity, and gene expression of defensomes. In TCC-exposed B. koreanus, growth retardation and reduced fecundity were observed and were shown to have a potentially deleterious effect on the life cycle of B. koreanus. In addition, time-dependent increases in ROS contents and GST enzymatic activity were shown in response to TCC exposure. In the reproduction test with the New Zealand mudsnail Potamopyrgus antipodarum TCC caused significantly increased embryo numbers at all tested concentrations, except in the group of 0.170 ug/L. TCC inhibited the growth of T. thermophila and the impairment of plasma membrane was observed after 2 hr exposure of TCC. Furthermore, it is noticeable that at environmentally relevant concentrations (1.0 ug/L), TCC can lead to statistically significant DNA damage in Tetrahymena thermophila, while the inhibition of growth and change of cell viability cannot be observed. In the freshwater mudsnail Potamopyrgus antipodarum after four weeks, environmentally relevant TCC concentrations of 1.6 to 10.5 ug/L resulted in significant increases in the number of unshelled embryos, whereas 0.2, 1.6, and 10.5 ug/L exposures significantly increased numbers of shelled embryos.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 副作用
皮脂毒素 - PACD(光过敏性接触性皮炎)。
Dermatotoxin - PACD (photoallergic contact dermatitis).
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
毒理性
  • 相互作用
三氯卡班(TCC)是一种在表层水中常规检测到的抗菌剂,据推测可能与脊椎动物内分泌系统发生相互作用。本研究考察了TCC单独使用以及与模型内分泌干扰物17β-群勃龙(TRB)联合使用对鱼类生殖功能的影响。成年Pimephales promelas连续暴露于1微克TCC/升或5微克TCC/升,0.5微克TRB/升,或者5微克TCC/升和0.5微克TRB/升的混合物(MIX)22天,检查了各种生殖和内分泌相关终点。TRB、MIX或5微克TCC/升暴露的胖头米诺鱼的累计产卵量显著减少。1微克TCC/升的暴露对生殖没有影响。通常,TRB和MIX处理引起了类似的生理效应,显著降低了雌性血浆中的卵黄蛋白原、雌二醇和睾酮,显著增加了雄性血浆中的雌二醇。基于卵巢转录组分析,TRB和TCC处理组有一些潜在的通路影响是共同的。然而,在大多数情况下,这些通路更可能与生殖状态的不同相关,而不是与雄激素特异性功能相关。总体而言,TCC在接近或等于表层水中测量浓度的条件下对鱼类生殖有毒。几乎没有证据表明TCC通过特定的内分泌或生殖作用模式引起生殖毒性,也没有证据表明它能够增强TRB的雄激素效应。尽管如此,一些测量环境浓度与效应浓度之间的相对较小的安全边际表明,有必要引起关注。
Triclocarban (TCC) is an antimicrobial agent routinely detected in surface waters that has been hypothesized to interact with the vertebrate endocrine system. The present study examined the effects of TCC alone and in combination with the model endocrine disruptor 17beta-trenbolone (TRB) on fish reproductive function. Adult Pimephales promelas were continuously exposed to either 1 ug TCC/L or 5 ug TCC/L, to 0.5 ug TRB/L, or to a mixture (MIX) of 5 ug TCC/L and 0.5 ug TRB/L for 22 d, and a variety of reproductive and endocrine-related endpoints were examined. Cumulative fecundity was significantly reduced in fathead minnows exposed to TRB, MIX, or 5 ug TCC/L. Exposure to 1 ug TCC/L had no effect on reproduction. In general, both TRB and MIX treatments caused similar physiological effects, evoking significant reductions in female plasma vitellogenin, estradiol, and testosterone, and significant increases in male plasma estradiol. Based on analysis of the ovarian transcriptome, there were potential pathway impacts that were common to both TRB- and TCC-containing treatment groups. In most cases, however, those pathways were more plausibly linked to differences in reproductive status than to androgen-specific functions. Overall, TCC was reproductively toxic to fish at concentrations at or near those that have been measured in surface water. There was little evidence that TCC elicits reproductive toxicity through a specific mode of endocrine or reproductive action, nor that it could augment the androgenic effects of TRB. Nonetheless, the relatively small margin of safety between some measured environmental concentrations and effect concentrations suggests that concern is warranted.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
许多广泛使用的医疗保健产品含有消毒剂,这些消毒剂在水生环境、土壤和沉积物中的持久性导致了生态系统的污染,并对野生动植物产生不利影响。最近,不仅高剂量而且低剂量的污染物以及多种化学物质的混合物的影响已成为人们关注的焦点。在这项研究中,使用线虫秀丽隐杆线虫(Caenorhabditis elegans)在水生测试介质中对消毒剂三氯生(TCS)和三氯卡班(TCC)进行了毒性测试。在单独单一物质毒性测试(96小时暴露)中测试了TCS和TCC的名义浓度,重点关注生长和繁殖终点。从单一物质测试中得到的中位有效浓度(EC50)随后被用来设定五种不同的TCS:TCC混合比例,以产生相同的毒性。对每个混合比例的六种稀释液测试了C. elegans的繁殖效果。在单一物质测试中,当考虑到对生长的影响时,TCC的毒性大约是TCS的30倍;在繁殖方面,TCC的毒性大约是TCS的50倍。对于这两种物质,对繁殖的毒性影响比对生长的影响更为显著。低剂量的TCS(1-10微摩尔/升)使繁殖增加了多达301%,可能与内分泌干扰或其他应激相关的补偿反应(毒物兴奋效应)有关。这两种消毒剂都没有刺激生长。在混合物中,TCC的增加量抑制了TCS对繁殖的刺激作用。此外,TCS和TCC的相互作用是拮抗性的,以至于混合物的毒性低于根据浓度加成原则预期的TCS和TCC混合物的毒性。
Many widely used healthcare products contain antiseptics, whose persistence in aquatic environments, soils, and sediments leads to the contamination of ecosystems and adversely affects wildlife. Recently, the impact not only of high but also low doses of contaminants and mixtures of several chemicals has become a focus of concern. In this study, toxicity tests of the antiseptics triclosan (TCS) and triclocarban (TCC) were performed in an aquatic test medium using the nematode Caenorhabditis elegans. Nominal concentrations of TCS and TCC were tested in separate single-substance toxicity tests (96-hr-exposure), focusing on growth and reproduction endpoints. Median effective concentrations (EC50s) from the single-substance tests were subsequently used to set up five different ratios of TCS:TCC mixtures leading to the same toxicity. Six dilutions of each mixture ratio were tested for effon reproduction of C. elegans. In the single-substance tests, TCC was about 30 times more toxic than TCS when considering effects on growth and concerning reproduction, TCC was about 50 times more toxic than TCS. For both substances, the toxic effect on reproduction was more pronounced than the one on growth. Low doses of TCS (1-10 umol/L) stimulated reproduction by up to 301% compared to the control, which might be due to endocrine disruption or other stress-related compensation responses (hormesis). Neither antiseptic stimulated growth. In the mixtures, increasing amounts of TCC inhibited the stimulatory effects of TCS on reproduction. In addition, the interactions of TCS and TCC were antagonistic, such that mixtures displayed lower toxicity than would have been expected when TCS and TCC mixtures adhered to the principle of concentration addition.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
化学混合物在环境相关浓度下对水生生物内分泌系统的影响引起了关注。三氯卡班(TCC)和无机汞(Hg2+)在水环境中普遍存在,已知它们通过不同的毒性作用机制干扰内分泌途径。然而,这两种污染物混合物对水生生物及其相关分子机制的影响尚不清楚。本研究检查了TCC和Hg2+的二元混合物对斑马鱼(Danio rerio)在21天暴露后生殖器官的的组织病理学和生化改变的影响。结果表明:1)在研究的浓度下,TCC单独对肝脏组织影响较小,但它通过干扰稳态和改变激素浓度的间接机制加重了Hg2+引起的肝脏病变;2)混合暴露个体的生殖腺,尤其是雄性个体的组织学病变更为严重。单独暴露于TCC(2.5或5微克/升)(测量浓度为140或310纳克/升)或Hg2+(5微克/升或10微克/升(测量浓度为367或557纳克/升))略微延缓了卵母细胞的发展,而共同暴露于5微克/升TCC和10微克/升Hg2+的标称浓度促进了卵母细胞的成熟。在雄性中,单独暴露于TCC或Hg2+略微延迟了精子的成熟,而它们的组合导致睾丸变小,精子数量比单独暴露于任一污染物的鱼要少;3)观察到暴露于二元混合物的鱼的病变可能是由参与类固醇生成的基因的转录改变引起的,例如cyp19a、3beta-HSD、cyp17、17beta-HSD,以及调节血液中睾酮和雌二醇的浓度。观察到结果进一步支持了鱼类对较低浓度的二元化学混合物的毒性反应的复杂性。由于不可能收集所有可能的有毒物质组合的受控研究的实证信息,因此应用组学方法可能会提高单一化学类别结果的预测能力。
Effects of chemical mixtures at environmentally relevant concentrations on endocrine systems of aquatic organisms are of concern. Triclocarban (TCC) and inorganic mercury (Hg2+) are ubiquitous in aquatic environments, and are known to interfere with endocrine pathways via different mechanisms of toxic action. However, effects of mixtures of the two pollutants on aquatic organisms and associated molecular mechanisms were unknown. This study examined effects of binary mixtures of TCC and Hg2+ on histopathological and biochemical alteration of reproductive organs in zebrafish (Danio rerio) after 21 d exposure. The results showed that: 1) At concentrations studied, TCC alone caused little effect on hepatic tissues, but it aggravated lesions in liver caused by Hg2+via indirect mechanisms of disturbing homeostasis and altering concentrations of hormones; 2) Histological lesions were more severe in gonads of individuals, especially males, exposed to the binary mixture. Exposure to TCC alone (2.5 or 5 ug/L) (measured concentration 140 or 310 ng/L) or Hg2+ alone (5 ug/L or 10 ug/L (measured concentration 367 or 557 ng/L) slightly retarded development of oocytes, whereas co-exposure to nominal concentrations of 5 ug/L TCC and 10 ug /L Hg2+ promoted maturation of oocytes. In males, maturation of sperm was slightly delayed by exposure to either TCC or Hg2+, while their combinations caused testes to be smaller and sperm to be fewer compared with fish exposed to either of the contaminants individually; 3) Lesions observed in fish exposed to binary mixtures might be due to altered transcription of genes involved in steroidogenesis, such as cyp19a, 3beta-HSD, cyp17, 17beta-HSD and modulated concentrations of testosterone and estradiol in blood plasma. The observed results further support the complexity of toxic responses of fish exposed to lesser concentrations of binary chemical mixtures. Since it is impossible to collect empirical information in controlled studies of all possible combinations of toxicants, the application of omics methods might improve the predictive capabilities of results of single classes of chemicals.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
  • 吸收
在一项小规模人群的人体暴露研究中,发现香皂中存在的一部分TCC(三氯卡班)可以通过皮肤吸收,并以N-葡萄糖苷酸形式通过尿液排出。因为它们在各种产品中大量生产和使用,所以它们被普通人群的人体吸收。在人体药代动力学研究中,三氯卡班的吸收量估计为使用的香皂中70 + 或 - 15毫克三氯卡班的0.6%。研究对象的尿液中三氯卡班-N-葡萄糖苷酸的浓度在各受试者之间有显著差异,并且连续每日使用香皂会导致排泄达到稳态水平。
A human exposure study in a small group of subjects demonstrated that a portion of the TCC present in bar soaps is absorbed through the skin and is excreted in urine as N-glucuronides. Because they are produced and used in large quantities in various products, they are absorbed into the human body of the general population. The absorption of triclocarban during a human pharmacokinetic study was estimated at 0.6% of the 70 + or - 15 mg of triclocarban in the soap used. The triclocarban-N-glucuronide urine concentration varied considerably among the study subjects, and continuous daily use of the soap led to steady-state levels of excretion.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
(14)C-TCC (3,4,4'-三氯碳酰亚胺) 在人体内的代谢已经进行了研究,研究对象在口服暴露于2.2微摩尔/公斤的剂量后。粪便排出(剂量的70%)在给药后120小时完全排出,尿液排出(剂量的27%)在给药后80小时完成。尿中的葡萄糖苷酸酯似乎是三氯卡班暴露的有价值生物标志物。
The metabolism of (14)C-TCC (3,4,4'-trichlorocarbanilide) has been investigated in humans following oral exposure to 2.2 mumol/kg. Fecal elimination (70% of dose) was complete at the 120 hour point after administration and the urinary excretion (27% of dose) was complete after 80 hours post-administration. Urinary glucuronides appear to be valuable biomarkers of triclocarban exposure.
来源:DrugBank
吸收、分配和排泄
  • 清除
在人体进行的药代动力学研究中,静脉注射含有放射性碳-14的(14)C-三氯卡班丙二醇后,放射性物质在血液中迅速清除,测得的血液清除半衰期为8.6小时。
After a pharmacokinetic study in man, radioactivity was rapidly cleared from blood after intravenous administrations of (14)C-triclocarban in propylene glycol with a blood clearance half-life measured to be 8.6 hours.
来源:DrugBank
吸收、分配和排泄
/MILK/ ...斯普拉格-道莱大鼠在一系列三个实验中被提供控制饮食、含0.2%重量比(质量比质量,w/w)或0.5% w/w三氯生的加强饲料,这些实验限制了关键生长期:妊娠期、妊娠和哺乳期,或仅哺乳期(交叉哺乳)以确定发展后果的易感窗口。 ...牛奶中三氯生的平均浓度几乎是相应母体血清水平的4倍。结果表明,妊娠期三氯生暴露并不影响母体将后代携带到足月的能力,但哺乳期三氯生暴露对后代的存活有不利影响,尽管目前尚不清楚减少存活率的机制。这些信息突出了评估三氯生在个人护理产品中应用的安全性以及早期生活暴露影响的重要性。
/MILK/ ... Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. ... The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
三氯卡班(TCC)在血液的细胞部分浓缩。因此,血浆中的三氯卡班水平至少比血液中存在的三氯卡班量低两倍。通过对一小群人类受试者的整体血液采样,证明了在淋浴期间从肥皂中吸收三氯卡班的量虽然较低,但具有显著性。
The antibacterial triclocarban (TCC) concentrates in the cellular fraction of blood. Consequently, plasma levels are at least two-fold lower than the TCC amount present in blood. Utilizing whole blood sampling, a low but significant absorption of TCC from soap during showering is demonstrated for a small group of human subjects.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    9
  • 危险品标志:
    N
  • 安全说明:
    S60,S61
  • 危险类别码:
    R50/53
  • WGK Germany:
    2
  • 海关编码:
    2924299090
  • 危险品运输编号:
    UN 3077 9/PG 3
  • RTECS号:
    FE1250000
  • 包装等级:
    III
  • 危险类别:
    9
  • 危险性防范说明:
    P201,P264,P280,P301+P330+P331,P312
  • 危险性描述:
    H302,H361,H372,H410
  • 储存条件:
    | 冰箱 |

SDS

SDS:ea49731e16c7f2101fd2a4c493dda79e
查看

模块 1. 化学品
1.1 产品标识符
: 康洁新
产品名称
1.2 鉴别的其他方法
Triclocarban
TCC
1-(4-Chlorophenyl)-3-(3,4-dichlorophenyl)urea
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅用于研发。不作为药品、家庭或其它用途。

模块 2. 危险性概述
2.1 GHS-分类
急性毒性, 经口 (类别 5)
致癌性 (类别 2)
急性水生毒性 (类别 1)
慢性水生毒性 (类别 1)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 警告
危险申明
H303 吞咽可能有害。
H351 怀疑会致癌。
H410 对水生生物毒性极大并具有长期持续影响.
警告申明
预防措施
P201 在使用前获取特别指示。
P202 在读懂所有安全防范措施之前切勿操作。
P273 避免释放到环境中。
P281 使用所需的个人防护设备。
事故响应
P308 + P313 如接触到或有疑虑:求医/ 就诊。
P391 收集溢出物。
安全储存
P405 存放处须加锁。
废弃处置
P501 将内容物/ 容器处理到得到批准的废物处理厂。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.1 物 质
: Triclocarban
别名
TCC
1-(4-Chlorophenyl)-3-(3,4-dichlorophenyl)urea
: C13H9Cl3N2O
分子式
: 315.58 g/mol
分子量
组分 浓度或浓度范围
1-(4-Chloro-phenyl)-3-(3,4-dichloro-phenyl)-urea
<=100%
化学文摘登记号(CAS 101-20-2
No.)
Tetrachloroethylene
0.1 - 0.25 %
化学文摘登记号(CAS 127-18-4
No.) 204-825-9
EC-编号 602-028-00-4
索引编号

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 向到现场的医生出示此安全技术说明书。
吸入
如果吸入,请将患者移到新鲜空气处。 如呼吸停止,进行人工呼吸。 请教医生。
皮肤接触
用肥皂和大量的水冲洗。 请教医生。
眼睛接触
用水冲洗眼睛作为预防措施。
食入
切勿给失去知觉者通过口喂任何东西。 用水漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,抗乙醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物, 氮氧化物, 氯化氢气体
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 作业人员防护措施、防护装备和应急处置程序
使用个人防护用品。 避免粉尘生成。 避免吸入蒸气、烟雾或气体。 保证充分的通风。
人员疏散到安全区域。 避免吸入粉尘。
6.2 环境保护措施
如能确保安全,可采取措施防止进一步的泄漏或溢出。 不要让产品进入下水道。
一定要避免排放到周围环境中。
6.3 泄漏化学品的收容、清除方法及所使用的处置材料
收集和处置时不要产生粉尘。 扫掉和铲掉。 放入合适的封闭的容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 避免形成粉尘和气溶胶。
在有粉尘生成的地方,提供合适的排风设备。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 使容器保持密闭,储存在干燥通风处。
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
组分 化学文摘登 值 容许浓度 基准
记号(CAS
No.)
Tetrachloroethylene 127-18-4 PC- 200 mg/m3 工作场所有害因素职业接触限值 -
TWA 化学有害因素
备注 可能人类致癌物
PC- 300 mg/m3 工作场所有害因素职业接触限值 -
STEL 化学有害因素
8.2 暴露控制
适当的技术控制
根据良好的工业卫生和安全规范进行操作。 休息前和工作结束时洗手。
个体防护设备
眼/面保护
带有防护边罩的安全眼镜符合 EN166要求请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟)
检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
身体保护
防渗透的衣服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和数量来选择。
呼吸系统防护
如危险性评测显示需要使用空气净化的防毒面具,请使用全面罩式多功能微粒防毒面具N100型(US
)或P3型(EN
143)防毒面具筒作为工程控制的候补。如果防毒面具是保护的唯一方式,则使用全面罩式送风防毒
面具。 呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 固体
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
熔点/凝固点: 254 - 256 °C - lit.
f) 沸点、初沸点和沸程
无数据资料
g) 闪点
> 150 °C
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸气压
无数据资料
l) 蒸汽密度
无数据资料
m) 密度/相对密度
1.53 g/cm3 在 25 °C
n) 水溶性
无数据资料
o) n-辛醇/水分配系数
辛醇--水的分配系数的对数值: 5.786
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应
无数据资料
10.4 应避免的条件
无数据资料
10.5 不相容的物质
强氧化剂, 强碱
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
无数据资料
皮肤刺激或腐蚀
皮肤 - 兔子 - 无皮肤刺激
眼睛刺激或腐蚀
眼睛 - 兔子 - 无眼睛刺激
呼吸道或皮肤过敏
无数据资料
生殖细胞致突变性
无数据资料
致癌性
IARC:
2A - 第2A组:或许对人类致癌 (Tetrachloroethylene)
生殖毒性
无数据资料
特异性靶器官系统毒性(一次接触)
无数据资料
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入可能有害。 可能引起呼吸道刺激。
摄入 如服入是有害的。
皮肤 通过皮肤吸收可能有害。 可能引起皮肤刺激。
眼睛 可能引起眼睛刺激。
接触后的征兆和症状
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
附加说明
化学物质毒性作用登记: 无数据资料

模块 12. 生态学资料
12.1 生态毒性
无数据资料
12.2 持久性和降解性
无数据资料
12.3 潜在的生物累积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不良影响
对水生生物毒性极大并具有长期持续影响.

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和不可回收的溶液交给有许可证的公司处理。
与易燃溶剂相溶或者相混合,在备有燃烧后处理和洗刷作用的化学焚化炉中燃烧
受污染的容器和包装
按未用产品处置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: 3077 国际海运危规: 3077 国际空运危规: 3077
14.2 联合国运输名称
欧洲陆运危规: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (1-(4-Chloro-phenyl)-3-
(3,4-dichloro-phenyl)-urea)
国际海运危规: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (1-(4-Chloro-phenyl)-3-
(3,4-dichloro-phenyl)-urea)
国际空运危规: Environmentally hazardous substance, solid, n.o.s. (1-(4-Chloro-phenyl)-3-(3,4-dichloro-
phenyl)-urea)
14.3 运输危险类别
欧洲陆运危规: 9 国际海运危规: 9 国际空运危规: 9
14.4 包裹组
欧洲陆运危规: III 国际海运危规: III 国际空运危规: III
14.5 环境危险
欧洲陆运危规: 是 国际海运危规 国际空运危规: 是
海洋污染物(是/否): 是
14.6 对使用者的特别提醒
进一步信息
危险品独立包装,液体5升以上或固体5公斤以上,每个独立包装外和独立内包装合并后的外包装上都必须有EHS
标识 (根据欧洲 ADR 法规 2.2.9.1.10, IMDG 法规 2.10.3),


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A

制备方法与用途

用途

三氯卡班在肥皂和其他清洁组合物中用作抑菌剂和防腐剂。它还可用作防腐剂和消毒剂。

生物活性

Triclocarban 是一种常用于个人护理用品中的抗细菌试剂。

靶点

细菌

体外研究

三氯卡班 (300 nM) 能增强 300 µM H₂O₂ 在大鼠胸腺细胞中的细胞毒性。三氯卡班并不会增加死亡细胞的数量,而是促进由 H₂O₂ 引发的细胞死亡过程,导致死亡细胞的比例进一步增加。Triclocarban 还表现出雌激素活性,在 ER 报告基因试验中诱导萤火虫荧光素酶活性,并促进 MCF-7 细胞增殖,同时在 mRNA 和蛋白质水平上上调 pS2 表达并下调 ERα 表达。

体内研究

人类受试者沐浴时使用肥皂可显著吸收三氯卡班,其全血中的最大浓度 (Cmax) 范围为 23 nM 至 530 nM。妊娠期间的三氯卡班暴露不会影响母鼠携带后代的能力,但在哺乳期的暴露会对后代存活产生不利影响。

化学性质

白色粉末。

用途

三氯卡班用作日用化学品中的抑菌剂。它具备持续、安全和稳定的杀菌特点,并且与皮肤有极好的相容性。此外,它对革兰氏阳性菌、革兰氏阴性菌、真菌、酵母菌以及病毒都具有高效的抑制作用。

三氯卡班还广泛用于洗衣粉、肥皂和沐浴露等产品中。

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    AUDU, ARAMANI A.;HEYN, ARNO H. A., WATER RES., 22,(1988) N 9, C. 1155-1162
    摘要:
    DOI:
  • 作为产物:
    参考文献:
    名称:
    Minatchy, S.; Mathew, Nisha, Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 1998, vol. 37, # 10, p. 1066 - 1068
    摘要:
    DOI:
  • 作为试剂:
    参考文献:
    名称:
    设计和立体选择性合成新型异戊烯醇融合的吡唑啉和吡唑类化合物作为潜在的抗癌药
    摘要:
    分别通过分子内的1,3-偶极环加成和缩合反应轻松合成了两个新的异戊烯醇稠合的吡唑啉和吡唑衍生物。所有化合物均通过NMR,IR和HRMS光谱进行表征。化合物的立体化学9b的,10,11A和11V用X射线结晶学分析进一步证实。在体外测试了与结构相关的吡唑啉和吡唑衍生物的抗增殖活性在四种人类恶性细胞系(SGC 7901,A549,Raji和HeLa)上:我们的结果表明,异戊四醇融合的吡唑衍生物表现出值得注意的细胞毒活性。其中,与顺铂相比,针对SGC 7901,A549,Raji和HeLa的2,4-二-Cl-苯基吡唑衍生物11t表现出更好的细胞毒性,IC 50值分别为2.71、3.18、1.09和13.52μM,IC50值与顺铂相比(IC 50值:分别为7.56、17.78、17.32和14.31μM)。
    DOI:
    10.1016/j.ejmech.2013.04.044
点击查看最新优质反应信息

文献信息

  • Kappa agonist compounds and pharmaceutical formulations thereof
    申请人:——
    公开号:US20030144272A1
    公开(公告)日:2003-07-31
    Compounds having kappa opioid agonist activity, compositions containing them and method of using them as analgesics are provided. The compounds of formulae I, II, IIA, III, IIIA, IIIB, IIIB-i, IV and IVA have the structure: 1 2 wherein R 1 , R 2 , R 3 , R 4 ; and X, X 4 , X 5 , X 7 , X 9 ; Y, Z and n are as described in the specification.
    提供具有kappa阿片受体激动剂活性的化合物,含有这些化合物的组合物以及使用它们作为镇痛剂的方法。 具有以下结构的化合物I、II、IIA、III、IIIA、IIIB、IIIB-i、IV和IVA: 1 2 其中 R 1 ,R 2 ,R 3 ,R 4 ;和 X,X 4 ,X 5 ,X 7 ,X 9 ; Y,Z和n如规范中所述。
  • Searching for Small Molecules as Antibacterials: Non-Cytotoxic Diarylureas Analogues of Triclocarban
    作者:Alessia Catalano、Domenico Iacopetta、Antonio Rosato、Lara Salvagno、Jessica Ceramella、Francesca Longo、Maria Stefania Sinicropi、Carlo Franchini
    DOI:10.3390/antibiotics10020204
    日期:——
    in over-the-counter consumer antiseptic wash products, due to their toxicity. Withdrawal of TCC has prompted efforts to search for new antimicrobial compounds. In this paper, we present the synthesis and biological evaluation, as antibiotic and non-cytotoxic agents, of a series of diarylureas, analogues of TCC. These compounds are characterized by an intriguingly simple chemistry and can be easily synthesized
    三氯卡班 (TCC) 是一种广谱亲脂性抗菌剂,是一种二芳基脲衍生物,60 多年来一直被用作玩具、服装、食品包装材料、食品工业地板、医疗用品,尤其是个人护理品的主要成分产品,例如肥皂、牙膏和洗发水。2016 年 9 月,美国 FDA 禁止在非处方消费抗菌洗涤产品中使用包括 TCC 在内的 19 种抗菌成分,因为它们具有毒性。TCC 的撤销促使人们努力寻找新的抗菌化合物。在本文中,我们介绍了一系列二芳基脲(TCC 类似物)作为抗生素和非细胞毒性药物的合成和生物学评价。这些化合物的特点是化学结构非常简单,并且很容易合成。在合成的化合物中,1ab和1bc成为最令人感兴趣的化合物,因为它们对金黄色葡萄球菌具有与TCC相同的活性(MIC = 16 µg/mL),并且对粪肠球菌的活性比TCC更高(MIC = 32 µg/mL)与 MIC = 64 µg/mL 相比)。此外,1ab和1bc对人乳腺上皮细胞
  • [EN] COMPOSITIONS AND METHODS OF MODULATING SHORT-CHAIN DEHYDROGENASE ACTIVITY<br/>[FR] COMPOSITIONS ET PROCÉDÉS DE MODULATION DE L'ACTIVITÉ DE LA DÉSHYDROGÉNASE À CHAÎNE COURTE
    申请人:UNIV CASE WESTERN RESERVE
    公开号:WO2018218251A1
    公开(公告)日:2018-11-29
    Compounds and methods of modulating 15-PGDH activity, modulating tissue prostaglandin levels, treating disease, diseases disorders, or conditions in which it is desired to modulate 15-PGDH activity and/or prostaglandin levels include 15-PGDH inhibitors described herein.
    化合物的15-PGDH活性调节方法、组织前列腺素水平调节、疾病治疗、疾病紊乱或希望调节15-PGDH活性和/或前列腺素水平的状况包括本文描述的15-PGDH抑制剂。
  • Carboxamide and amino derivatives and methods of their use
    申请人:Dolle E. Roland
    公开号:US20050113294A1
    公开(公告)日:2005-05-26
    Carboxamide and amino derivatives, pharmaceutical compositions containing these compounds, and methods for their pharmaceutical use are disclosed. In certain embodiments, the carboxamide derivatives are ligands of the δ opioid receptor and are useful, inter alia, for treating and/or preventing pain, anxiety, gastrointestinal disorders, and other δ opioid receptor-mediated conditions.
    Carboxamide和氨基衍生物,含有这些化合物的药物组合物,以及其药用方法被披露。在某些实施例中,Carboxamide衍生物是δ阿片受体的配体,可用于治疗和/或预防疼痛、焦虑、胃肠道疾病和其他δ阿片受体介导的疾病。
  • 一种催化氧化羰基化合成不对称二取代脲的 方法
    申请人:南京师范大学
    公开号:CN107417478B
    公开(公告)日:2020-05-05
    本发明公开了一种直接合成不对称二取代脲类化合物的新方法,在溶剂聚乙二醇或聚乙二醇的水溶液中,在碱、碘化物和氧化剂的作用下,加入钯催化剂,催化伯胺与一氧化碳的直接交叉偶联反应制备不对称二取代脲类化合物。本发明的偶联反应制备不对称二取代脲类化合物的方法,具有具有氧化剂来源广泛和环境友好;底物来源广泛、廉价和易于处理;羰基源稳定、廉价和不产生废物;反应无需配体且活性好;反应条件温和且选择性高;底物官能团相容性好且底物的适用范围广;反应介质绿色且可以循环回收的优势。在优化的反应条件之下,目标产品分离收率可高达97%左右。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐