摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-guanidinopropionaldehyde | 1221685-79-5

中文名称
——
中文别名
——
英文名称
3-guanidinopropionaldehyde
英文别名
GPAL;(3-Ketopropyl) guanidine;2-(3-oxopropyl)guanidine
3-guanidinopropionaldehyde化学式
CAS
1221685-79-5
化学式
C4H9N3O
mdl
——
分子量
115.135
InChiKey
MQLMWJYRIJSPAE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    218.3±42.0 °C(Predicted)
  • 密度:
    1.24±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -1.9
  • 重原子数:
    8
  • 可旋转键数:
    3
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    81.5
  • 氢给体数:
    2
  • 氢受体数:
    2

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3-guanidinopropionaldehyde 在 Pisum sativum aminoaldehyde dehydrogenase 2 、 nicotinamide adenine dinucleotide 作用下, 生成 胍基丙酸
    参考文献:
    名称:
    Structural and Functional Characterization of Plant Aminoaldehyde Dehydrogenase from Pisum sativum with a Broad Specificity for Natural and Synthetic Aminoaldehydes
    摘要:
    Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 angstrom resolution, respectively. Both recombinant, proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants. (C) 2009 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.jmb.2009.12.015
  • 作为产物:
    描述:
    3-guanidinopropionaldehyde diethylacetal 在 盐酸 作用下, 以 为溶剂, 生成 3-guanidinopropionaldehyde
    参考文献:
    名称:
    Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7
    摘要:
    醛脱氢酶(ALDHs)负责生物醛中间产物的氧化以及脂质过氧化过程中产生的醛的细胞解毒。迄今为止,植物中已描述了 13 个 ALDH 家族。在本研究中,我们通过分析玉米和豌豆的 ALDH7(ZmALDH7 和 PsALDH7)以及四种玉米细胞质 ALDH(cALDH)2 异构体 RF2C、RF2D、RF2E 和 RF2F,对植物 ALDH2 和 ALDH7 家族进行了详细的生化鉴定[发现的第一个玉米 ALDH2 是一种生育力恢复剂(RF2A)]。我们报告了 ZmALDH7、RF2C 和 RF2F 的高分辨率晶体结构。ZmALDH7 的结构表明,ALDH7 家族中的三个保守残基 Glu120、Arg300 和 Thr302 位于底物结合位点,并且是该家族所特有的。我们的动力学分析表明,α-氨基己二酸半醛是赖氨酸分解代谢的中间产物,是植物 ALDH7 的首选底物。相比之下,芳香醛(包括苯甲醛、茴香醛、肉桂醛、针叶醛和山奈醛)是 cALDH2 的最佳底物。与这些结果相一致,RF2C 和 RF2F 的晶体结构显示,它们的底物结合位点相似,都是由一个主要由苯丙氨酸残基和几个非极性残基组成的芳香族簇构成。基因表达研究表明,RF2C 基因在所有器官中都有很强的表达,似乎是必不可少的,这表明该酶的关键作用肯定与以苯丙醛途径中的醛为底物形成细胞壁有关。最后,植物的 ALDH7 可能对渗透保护有重大贡献,因为它能氧化多种氨基醛,产生被称为渗透溶质的产物。
    DOI:
    10.1042/bj20150009
点击查看最新优质反应信息

文献信息

  • RADIOIODINATED GUANIDINES
    申请人:Avory Michelle E.
    公开号:US20130272961A1
    公开(公告)日:2013-10-17
    The present invention provides novel radioiodinated guanidines. Also provided are methods of preparation of said radioiodinated guanidines from non-radioactive precursors, as well as radiopharmaceutical compositions comprising such radioiodinated guanidines. The invention also provides in vivo imaging methods using the radioiodinated guanidines.
    本发明提供了新型的放射性碘化胍类。还提供了从非放射性前体制备所述放射性碘化胍类的方法,以及包含这种放射性碘化胍类的放射性药物组合物。本发明还提供了使用放射性碘化胍类的体内成像方法。
  • Structural and Functional Characterization of Plant Aminoaldehyde Dehydrogenase from Pisum sativum with a Broad Specificity for Natural and Synthetic Aminoaldehydes
    作者:Martina Tylichová、David Kopečný、Solange Moréra、Pierre Briozzo、René Lenobel、Jacques Snégaroff、Marek Šebela
    DOI:10.1016/j.jmb.2009.12.015
    日期:2010.3
    Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 angstrom resolution, respectively. Both recombinant, proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants. (C) 2009 Elsevier Ltd. All rights reserved.
  • Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7
    作者:Radka Končitíková、Armelle Vigouroux、Martina Kopečná、Tomáš Andree、Jan Bartoš、Marek Šebela、Solange Moréra、David Kopečný
    DOI:10.1042/bj20150009
    日期:2015.5.15

    Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu120, Arg300 and Thr302 in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.

    醛脱氢酶(ALDHs)负责生物醛中间产物的氧化以及脂质过氧化过程中产生的醛的细胞解毒。迄今为止,植物中已描述了 13 个 ALDH 家族。在本研究中,我们通过分析玉米和豌豆的 ALDH7(ZmALDH7 和 PsALDH7)以及四种玉米细胞质 ALDH(cALDH)2 异构体 RF2C、RF2D、RF2E 和 RF2F,对植物 ALDH2 和 ALDH7 家族进行了详细的生化鉴定[发现的第一个玉米 ALDH2 是一种生育力恢复剂(RF2A)]。我们报告了 ZmALDH7、RF2C 和 RF2F 的高分辨率晶体结构。ZmALDH7 的结构表明,ALDH7 家族中的三个保守残基 Glu120、Arg300 和 Thr302 位于底物结合位点,并且是该家族所特有的。我们的动力学分析表明,α-氨基己二酸半醛是赖氨酸分解代谢的中间产物,是植物 ALDH7 的首选底物。相比之下,芳香醛(包括苯甲醛、茴香醛、肉桂醛、针叶醛和山奈醛)是 cALDH2 的最佳底物。与这些结果相一致,RF2C 和 RF2F 的晶体结构显示,它们的底物结合位点相似,都是由一个主要由苯丙氨酸残基和几个非极性残基组成的芳香族簇构成。基因表达研究表明,RF2C 基因在所有器官中都有很强的表达,似乎是必不可少的,这表明该酶的关键作用肯定与以苯丙醛途径中的醛为底物形成细胞壁有关。最后,植物的 ALDH7 可能对渗透保护有重大贡献,因为它能氧化多种氨基醛,产生被称为渗透溶质的产物。
查看更多