In this paper we report the synthesis of N1-hexylthymine (1), N1-hexylcytosine (2), N1-hexylcytosine hydrobromide (3) and [(N1-hexylcytosinium)·(N1-hexylcytosine)]2·[Cl2Hg(μ-Cl)2HgCl2] (4) (the hemiprotonated form of the N1-hexylcytosine forming a CHC+ pair with carbonyl-amino symmetric and N3–N3 recognitions) and X-ray characterization of compounds 1, 3 and 4. In the solid state, N1-hexylthymine 1 follows exactly the same behaviour as N1-hexyluracil. In addition to strong hydrogen bonding interactions, various weak forces, i.e. C–H/π, carbonyl–carbonyl (CO⋯CO) and anion–π interactions (between the bromide and N1 of cytosine in 3), play a key role in stabilizing the 3D architectures of the compounds. The theoretical calculations allow estimation of the strength of these contacts and how they influence each other.
在本文中,我们报告了N1-己基胸腺
嘧啶(1),N1-己基
胞嘧啶(2),N1-己基
胞嘧啶溴化氢盐(3)以及[(N1-己基
胞嘧啶阳离子)·(N1-己基
胞嘧啶)]2·[Cl2Hg(μ-Cl)2HgCl2](4)(N1-己基
胞嘧啶的半质子化形式,与羰基-
氨基对称及N3–N3识别形成CHC+对)和化合物1、3与4的X射线表征。在固态中,N1-己基胸腺
嘧啶1的行为与N1-己基尿
嘧啶完全相同。除了强氢键相互作用外,各种弱作用力,即C–H/π相互作用、羰基-羰基(CO⋯CO)和阴离子-π相互作用(在3中
溴化物与
胞嘧啶的N1之间),在稳定化合物的三维结构中起着关键作用。理论计算使我们能够估计这些相互接触的强度及其相互影响。