A novel strategy for the dehydrogenation of the NH−NH bond is disclosed using potassium tert‐butoxide (tBuOK) in liquid ammonia (NH3) under air at room temperature. Its synthetic value is well demonstrated by the highly efficient synthesis of aromatic azo compounds (up to 100 % yield, 3 min), heterocyclic azo compounds, and dehydrazination of phenylhydrazine. The broad application of this strategy
New Heteroaromatic Azo Compounds Based on Pyridine, Isoxazole, and Benzothiazole for Efficient and Highly Selective Amidation and Mono-<i>N</i>-Benzylation of Amines under Mitsunobu Conditions
4,4′-Azopyridine (2c) is used in conjunction with triphenylphosphine for the efficient conversion of carboxylic acids into amides via Mitsunobu reaction with primary and secondary aliphatic and aromatic amines. The highly selective amidation of only primary aromatic amines with new heterogeneous azo compounds based on benzothiazole 2d and isoxazole 2e is also described. These azo compounds 2c–2e can also be applied for selective mono-N-benzylation of primary aromatic amines. The solid side product heteroaromatic hydrazines obtained under the developed Mitsunobu conditions are easily separated by simple filtration and can be reoxidized to azo compounds for further use.
class of electron-deficient reagents for Mitsunobuesterificationreactions. Among these compounds, 4,4′-azopyridine was found to be the most suitable one for esterification and thioesterification reactions. This new reagent promises to provide general and complementary solutions for separation problems in Mitsunobureactions without restricting the reaction scope and facilitates the isolation of its
Electrochemical dehydrogenation of hydrazines to azo compounds
作者:Ke-Si Du、Jing-Mei Huang
DOI:10.1039/c9gc00515c
日期:——
A strategy for the electrochemical dehydrogenation of hydrazine compounds is disclosed under ambient conditions. This protocol proceeded smoothly in ethanol by employing electrons as clean oxidants. Its synthetic value is well demonstrated by the highly efficient synthesis of symmetric and unsymmetric azo compounds. It is an environmentally friendly transformation and the present protocol was effective