Stereospecific chemical and enzymatic stability of phosphoramidate triester prodrugs of d4T in vitro
摘要:
The phosphoramidate triester prodrug approach is widely used to deliver nucleotide forms of nucleoside analogues into target cells. We investigated the stereoselective stability of a series of prodrugs of the anti-HIV agent 2',3'-didehydro-2',3'-dideoxythymidine (d4T). Chemical stability was evaluated in phosphate buffer at pH values of biological relevance (i.e. pH 2.0, 4.6, 7.4). Enzymatic stability was tested in human plasma, in Caco-2 cell homogenates and monolayers and in rat liver. The compounds were relatively stable to chemical hydrolysis. Between 50 and 70% of unchanged prodrug was recovered after 16 h incubation in human plasma, with no stereoselective preference for phosphate diastereoisomers. The p-OMe phenyl derivative, however, was an exception and only 5% of one diastereoisomer was recovered. In Caco-2 cells the stability and stereoselectivity largely depended on the experimental conditions: high enzymatic activity and stereoselectivity was observed in cell homogenates, but not in monolayers. In rat liver S9 fractions the stability profile was similar to that in Caco-2 cells and carboxyl ester cleavage appeared to be the sole mechanism of degradation in both media. The large and unpredictable differences in stereoselective metabolic rate of the pronucleotide series here presented suggest that in vivo circulating levels of intact prodrug could exert profoundly different activity or toxicity due to preferential body distribution of one diastereoisomeric form. (C) 2004 Elsevier B.V. All rights reserved.
several protease inhibitors to block the hydrolysis of these phosphoramidate derivatives. We found that these proteases exhibit chiral selectivity at the phosphorus center of stavudine derivatives. Our results indicate that cellular proteases may be responsible for the activation of these phosphoramidate derivatives. In addition, we show that the enzymatic hydrolysis takes place at the carboxymethyl ester
Stereochemical influence on lipase-mediated hydrolysis and biological activity of stampidine and other stavudine phosphoramidates
作者:T.K. Venkatachalam、P. Samuel、F.M. Uckun
DOI:10.1016/j.bmc.2004.12.024
日期:2005.3.1
by lipase-mediated hydrolysis. The target site for the lipase appears to be the methyl ester group of the L-alanine side chain. Accordingly, the D-amino acid substituted isomers Rp or Sp}are resistant to lipase-mediated hydrolysis and exhibit substantially less anti-HIV activity. Molecular modeling results indicate that the L-amino acid configured isomers Rp or Sp} are preferred in the lipase binding
Changing the nucleoside group of a series of phosphoramidate derivatives affects the enzyme mediated hydrolysis rate of the compounds. d4T and AZT-substituted analogs were activated by enzymes such as lipases, esterases, and proteases. On the other hand, 3dT-substituted derivatives were comparatively less prone to hydrolysis under similar experimental conditions. From the experimental results, we propose that-the most preferable nucleoside group for enzyme activation is d4T rather than AZT or 3dT. Additionally, we also observed that depending on the enzymes used the chiral selectivity of the enzymes for the phosphorus center of these phosphoramidate derivatives differed, demonstrating the importance of the nucleoside structure for this class of compounds. (c) 2005 Elsevier Ltd. All rights reserved.