摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Quercetin-3-glucoside

中文名称
——
中文别名
——
英文名称
Quercetin-3-glucoside
英文别名
4-[5,7-dihydroxy-4-oxo-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-yl]-2-hydroxyphenolate
Quercetin-3-glucoside化学式
CAS
——
化学式
C21H19O12-
mdl
——
分子量
463.4
InChiKey
OVSQVDMCBVZWGM-QSOFNFLRSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1
  • 重原子数:
    33
  • 可旋转键数:
    4
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.29
  • 拓扑面积:
    209
  • 氢给体数:
    7
  • 氢受体数:
    12

反应信息

  • 作为反应物:
    描述:
    malonyl-CoA(5-) 、 Quercetin-3-glucoside 生成 coenzyme A 、 Quercetin 3-malonylglucoside
    参考文献:
    名称:
    Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells
    摘要:
    摘要暴露于有害萘酚的烟草细胞(Nicotiana tabacum L. Bright Yellow T-13)会以葡萄糖基化和进一步修饰化合物的形式积累萘酚[Taguchi 等人(2003a),植物科学 164,231-240]。在本研究中,我们发现积累的化合物是萘酚的 6′-O-丙二酰化葡萄糖苷。用各种酚类化合物处理的细胞主要以丙二酰葡萄糖苷的形式积累黄酮类化合物。为了明确烟草中丙二酰化的功能,我们从烟草细胞的 cDNA 文库中分离出了编码丙二酰转移酶(NtMaT1)的 cDNA。将该基因在大肠杆菌中进行异源表达后发现,重组酶具有丙二酰转移酶活性,可作用于多种酚葡糖苷,如黄酮 7-O-葡糖苷、黄酮 3-O-葡糖苷和萘酚葡糖苷。该酶的底物偏好与烟草细胞提取物相似。通过 RNA 干扰抑制烟草 BY-2 细胞中 NtMaT1 mRNA 的表达,转基因细胞中的丙二酰化活性明显降低。转基因细胞中的化合物以葡萄糖苷或其他修饰化合物的形式在细胞中积累,取代了丙二酰葡萄糖苷。这些结果表明,NtMaT1 是烟草植物中异生物类黄酮和萘酚葡萄糖苷丙二酰化的主要催化剂。
    DOI:
    10.1111/j.1365-313x.2005.02387.x
  • 作为产物:
    描述:
    Quercetin-7-olate 、 UDP-glucose 生成 氢(+1)阳离子Quercetin-3-glucosideUDP
    参考文献:
    名称:
    使用具有两个糖基转移酶的大肠杆菌进行区域选择性合成类黄酮双糖苷。
    摘要:
    由于类黄酮中存在多个羟基,因此不容易实现类黄酮的区域选择性糖基化。通过使用尿苷二磷酸依赖性糖基转移酶(UGT)可以克服这一障碍,该酶使用核苷酸糖作为糖供体,并使用包括类黄酮在内的多种化合物作为糖受体。槲皮素鼠李糖苷具有抗病毒活性。使用表达两个UGT的大肠杆菌合成了两种槲皮素二糖苷,槲皮素3-O-葡糖苷-7-O-鼠李糖苷和槲皮素3,7-O-双鼠李糖苷。对于槲皮素3-O-葡萄糖苷-7-O-鼠李糖苷的合成,AtUGT78D2将葡萄糖从UDP-葡萄糖转移到槲皮素的3-羟基,而AtUGT89C1将鼠李糖从UDP-鼠李糖转移到7-羟基。一组槲皮素3-O-葡萄糖苷,被转化到大肠杆菌中。使用这种方法,合成了67 mg / L槲皮素3-O-葡萄糖苷-7-O-鼠李糖苷。对于槲皮素3,7-O-双鼠李糖苷的合成,使用将鼠李糖转移至槲皮素3-羟基的AtUGT78D1和AtUGT89C1。共表达拟南芥的RHM2基因以
    DOI:
    10.1007/s00253-013-4844-7
点击查看最新优质反应信息

文献信息

  • Discovery of UDP-Glycosyltransferases and BAHD-Acyltransferases Involved in the Biosynthesis of the Antidiabetic Plant Metabolite Montbretin A
    作者:Sandra Irmisch、Seohyun Jo、Christopher R. Roach、Sharon Jancsik、Macaire Man Saint Yuen、Lufiani L. Madilao、Mark O’Neil-Johnson、Russel Williams、Stephen G. Withers、Joerg Bohlmann
    DOI:10.1105/tpc.18.00406
    日期:2018.8
    active molecules for drug discovery. The acylated flavonol glycoside montbretin A (MbA) and its precursor myricetin 3-O-(6'-O-caffeoyl)-glucosyl rhamnoside (mini-MbA) are potent inhibitors of human pancreatic α-amylase and are being developed as drug candidates to treat type-2 diabetes. MbA occurs in corms of the ornamental plant montbretia (Crocosmia x crocosmiiflora), but a system for large-scale MbA production
    植物专门的代谢是药物发现的生物活性分子的丰富资源。酰化黄酮醇糖苷 montbretin A (MbA) 及其前体杨梅素 3-O-(6'-O-咖啡酰基)-葡萄糖基鼠李糖苷 (mini-MbA) 是人胰腺 α-淀粉酶的有效抑制剂,正在开发作为候选药物治疗2型糖尿病。 MbA 存在于观赏植物 montbretia (Crocosmia x crocosmiiflora) 的球茎中,但目前尚无大规模生产 MbA 的系统。来自黄酮醇杨梅素的 MbA 生物合成和 MbA 积累发生在球茎发育的早期阶段。我们建立了杨梅素 3-O-鼠李糖苷 (MR)、杨梅素 3-O-葡萄糖基鼠李糖苷 (MRG) 和 mini-MbA 作为 MbA 生物合成的前三种中间体。对比年轻和年老球茎的转录组揭示了UDP糖依赖性糖基转移酶(UGT)和BAHD-酰基转移酶(BAHD-AT)的差异表达。 UGT77B2和UGT709G2分
  • Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells
    作者:Goro Taguchi、Yoshihiro Shitchi、Sakiko Shirasawa、Hirobumi Yamamoto、Nobuaki Hayashida
    DOI:10.1111/j.1365-313x.2005.02387.x
    日期:2005.5
    Summary

    Tobacco cells (Nicotiana tabacum L. Bright Yellow T‐13) exposed to harmful naphthols accumulate them as glucosylated and further modified compounds [Taguchi et al. (2003a) Plant Sci. 164, 231–240]. In this study, we identified the accumulated compounds to be 6′‐O‐malonylated glucosides of naphthols. Cells treated with various phenolic compounds accumulated the flavonoids mainly as malonylglucosides. To clarify the function of this malonylation in tobacco, we isolated the cDNA encoding a malonyltransferase (NtMaT1) from a cDNA library derived from tobacco cells. The heterologous expression of the gene in Escherichia coli revealed that the recombinant enzyme had malonyltransferase activity against several phenolic glucosides such as flavonoid 7‐O‐glucosides, flavonoid 3‐O‐glucosides and naphthol glucosides. The substrate preference of the enzyme was similar to that of the tobacco cell extract. Malonylation activity in the transgenic cells markedly decreased with the suppression of the expression of NtMaT1 mRNA in tobacco BY‐2 cells by RNA interference. The compounds administered to the transgenic cells were accumulated in the cells as glucosides or other modified compounds in place of malonylglucosides. These results show that NtMaT1 is the main catalyst of malonylation on glucosides of xenobiotic flavonoids and naphthols in tobacco plants.

    摘要暴露于有害萘酚的烟草细胞(Nicotiana tabacum L. Bright Yellow T-13)会以葡萄糖基化和进一步修饰化合物的形式积累萘酚[Taguchi 等人(2003a),植物科学 164,231-240]。在本研究中,我们发现积累的化合物是萘酚的 6′-O-丙二酰化葡萄糖苷。用各种酚类化合物处理的细胞主要以丙二酰葡萄糖苷的形式积累黄酮类化合物。为了明确烟草中丙二酰化的功能,我们从烟草细胞的 cDNA 文库中分离出了编码丙二酰转移酶(NtMaT1)的 cDNA。将该基因在大肠杆菌中进行异源表达后发现,重组酶具有丙二酰转移酶活性,可作用于多种酚葡糖苷,如黄酮 7-O-葡糖苷、黄酮 3-O-葡糖苷和萘酚葡糖苷。该酶的底物偏好与烟草细胞提取物相似。通过 RNA 干扰抑制烟草 BY-2 细胞中 NtMaT1 mRNA 的表达,转基因细胞中的丙二酰化活性明显降低。转基因细胞中的化合物以葡萄糖苷或其他修饰化合物的形式在细胞中积累,取代了丙二酰葡萄糖苷。这些结果表明,NtMaT1 是烟草植物中异生物类黄酮和萘酚葡萄糖苷丙二酰化的主要催化剂。
  • UGT73C6 and UGT78D1, Glycosyltransferases Involved in Flavonol Glycoside Biosynthesis in Arabidopsis thaliana
    作者:Patrik Jones、Burkhard Messner、Jun-Ichiro Nakajima、Anton R. Schäffner、Kazuki Saito
    DOI:10.1074/jbc.m303523200
    日期:2003.11
    Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDPglucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-O-rhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.
  • Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases
    作者:Hyeon Jeong Kim、Bong-Gyu Kim、Joong-Hoon Ahn
    DOI:10.1007/s00253-013-4844-7
    日期:2013.6
    as sugar acceptors. Quercetin rhamnosides contain antiviral activity. Two quercetin diglycosides, quercetin 3-O-glucoside-7-O-rhamnoside and quercetin 3,7-O-bisrhamnoside, were synthesized using Escherichia coli expressing two UGTs. For the synthesis of quercetin 3-O-glucoside-7-O-rhamnoside, AtUGT78D2, which transfers glucose from UDP-glucose to the 3-hydroxyl group of quercetin, and AtUGT89C1, which
    由于类黄酮中存在多个羟基,因此不容易实现类黄酮的区域选择性糖基化。通过使用尿苷二磷酸依赖性糖基转移酶(UGT)可以克服这一障碍,该酶使用核苷酸糖作为糖供体,并使用包括类黄酮在内的多种化合物作为糖受体。槲皮素鼠李糖苷具有抗病毒活性。使用表达两个UGT的大肠杆菌合成了两种槲皮素二糖苷,槲皮素3-O-葡糖苷-7-O-鼠李糖苷和槲皮素3,7-O-双鼠李糖苷。对于槲皮素3-O-葡萄糖苷-7-O-鼠李糖苷的合成,AtUGT78D2将葡萄糖从UDP-葡萄糖转移到槲皮素的3-羟基,而AtUGT89C1将鼠李糖从UDP-鼠李糖转移到7-羟基。一组槲皮素3-O-葡萄糖苷,被转化到大肠杆菌中。使用这种方法,合成了67 mg / L槲皮素3-O-葡萄糖苷-7-O-鼠李糖苷。对于槲皮素3,7-O-双鼠李糖苷的合成,使用将鼠李糖转移至槲皮素3-羟基的AtUGT78D1和AtUGT89C1。共表达拟南芥的RHM2基因以
  • Whitefly hijacks a plant detoxification gene that neutralizes plant toxins
    作者:Jixing Xia、Zhaojiang Guo、Zezhong Yang、Haolin Han、Shaoli Wang、Haifeng Xu、Xin Yang、Fengshan Yang、Qingjun Wu、Wen Xie、Xuguo Zhou、Wannes Dermauw、Ted C.J. Turlings、Youjun Zhang
    DOI:10.1016/j.cell.2021.02.014
    日期:2021.4
查看更多