SUBSTITUTED 2,4 DIAMINO-QUINOLINE AS NEW MEDICAMENT FOR FIBROSIS, AUTOPHAGY AND CATHEPSINS B (CTSB), L (CTSL) AND D (CTSD) RELATED DISEASES
申请人:Genoscience Pharma SAS
公开号:EP3620164A1
公开(公告)日:2020-03-11
The present invention relates to novel 2-primary amino-4-secondary amino-quinoline derivatives, their manufacture, pharmaceutical compositions comprising them and their use as medicaments. The active compounds of the present invention can be useful as a medicament in the treatment and/or the decreasing and/or the prevention of fibrosis and/or fibrosis related diseases, or for use as a medicament in the treatment and/or the decreasing and/or the prevention of the autophagy and/or autophagy related diseases and for the inhibition of the autophagy flux, or for use in the inhibition of cathepsins B (CTSB), L (CTSL) and/or D (CTSD) and/or cathepsins B (CTSB), L (CTSL) and/or D (CTSD) related diseases; with the proviso that said compounds are not to be used for the treatment of any forms of cancers.
Substituted 2,4 diamino-quinoline as new medicament for fibrosis, autophagy and cathepsins B (CTSB), L (CTSL) and D (CTSD) related diseases
申请人:Genoscience Pharma
公开号:US11261189B2
公开(公告)日:2022-03-01
2-primary amino-4-secondary amino-quinoline derivatives, their manufacture, pharmaceutical compositions comprising them and their use as medicaments are disclosed. The compounds are useful as a medicament in treating and/or decreasing the severity and/or progression and/or preventing fibrosis and/or related diseases, or for use as a medicament in treating, decreasing the severity and/or progression of and/or preventing autophagy and/or related diseases, for inhibiting autophagy flux, and for inhibiting cathepsins B (CTSB), L (CTSL) and/or D (CTSD) and/or related diseases.
A series of quinoline derivatives was synthesized and biologically evaluated as Enhancer of Zeste Homologue 2 (EZH2) inhibitors. Structure-activity relationship (SAR) studies led to the discovery of 5-methoxy-2-(4-methyl-1,4-diazepan-1-yl)-N-(1-methylpiperidin-4-yl)quinolin-4-amine (5k), which displayed an IC50 value of 1.2 μM against EZH2, decreased global H3K27me3 level in cells and also showed good anti-viability activities against two tumor cell lines. Due to the low molecular weight and the fact that no quinoline derivative has been reported as an EZH2 inhibitor, this compound could serve as a lead compound for further optimization.