Inhibitory effects of polyphenols toward HCV from the mangrove plant Excoecaria agallocha L.
摘要:
Four new polyphenols namely excoecariphenols A-D (1-4) were isolated from the Chinese mangrove plant Excoecaria agallocha L. together with 23 known phenolic compounds. The structures of new compounds were elucidated on the basis of extensive spectroscopic analyses including IR, MS, NMR, and CD data. Excoecariphenols A and B presented as the unusual flavane-based 1-thioglycosides. Part of the isolated polyphenols were tested against hepatitis C NS3-4A protease and HCV RNA in huh 7.5 cells. Excoecariphenol D, corilagin, geraniin, and chebulagic acid showed potential inhibition toward HCV NS3-4A protease with IC50 values in a range of 3.45-9.03 mu M, while excoecariphenol D and corilagin inhibited HCV RNA in huh 7.5 cells significantly. A primary structure-activity relationship (SAR) is discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Catechin Glucosides: Occurrence, Synthesis, and Stability
摘要:
Catechins are flavonoids with suggested health benefits, but are unstable during storage, processing and, after ingestion, during gut transit. We hypothesized that catechin glucosides, which occur in various plants, could be more stable than unsubstituted catechin, and additionally be deglucosylated in the gut and so act to deliver catechin in a form able to be absorbed. (+)-Catechin O-glucosides from various sources have been used in the course of this investigation. (+)-Catechin 3'-O-beta-D-glucopyranoside (C3'G), (+)-catechin 5-O-beta-D-glucopyranoside (C5G), and (+)-catechin 3-O-beta-D-glucopyranoside (C3G) were chemically synthesized. (+)-Catechin 4'-O-beta-D-glucopyranoside (C4'G) and (+)-catechin 7-O-beta-D-glucopyranoside (C7G) were prepared enzymically using preparations from lentil and barley. In general, but with some exceptions, the (+)-catechin glucosides were more stable between pH 4 and 8 than (+)-catechin, with C3'G exhibiting greatest stability. The intestinal metabolism of (+)-catechin and all (+)-catechin glucosides in the gut was determined by perfusion of rat intestine in vivo. C3'G and C5G were extensively deglycosylated in the gut, and C3'G showed greatest apparent "absorption" as calculated by the difference between effluent and influent. The results show the potential of catechin glucosides, especially C3'G, as more stable prescursors of catechin.
Flavonoid compounds capable of modifying the dynamic and/or physical state of biological membranes and to stimulate the endogenous synthesis of stress proteins in eukaryotic cells, relative synthesis and their use
申请人:——
公开号:US20040266699A1
公开(公告)日:2004-12-30
The invention relates to flavonoids compounds of formula (I) and (II) capable of modifying the dynamic and/or physical state of biological membranes and to stimulate the endogenous synthesis of stress proteins in eukaryotic cells. Such compounds are molecules of plant origin or synthetic. The invention also describes a method to identify, purify and chemically synthesize such flavonoid compounds and test their efficacy through their capacity to stimulate the transcription of stress genes and as a consequence, to interact with biological membranes with alteration of their relative physical state. Such compounds and corresponding pharmaceutically acceptable derivatives and/or salts have applications in the areas of pharmaceuticals, more specifically in cosmetics and dermatology, for all those afections related to an alteration of the expression of stress genes.
1
Catechin Glucosides: Occurrence, Synthesis, and Stability
Catechins are flavonoids with suggested health benefits, but are unstable during storage, processing and, after ingestion, during gut transit. We hypothesized that catechin glucosides, which occur in various plants, could be more stable than unsubstituted catechin, and additionally be deglucosylated in the gut and so act to deliver catechin in a form able to be absorbed. (+)-Catechin O-glucosides from various sources have been used in the course of this investigation. (+)-Catechin 3'-O-beta-D-glucopyranoside (C3'G), (+)-catechin 5-O-beta-D-glucopyranoside (C5G), and (+)-catechin 3-O-beta-D-glucopyranoside (C3G) were chemically synthesized. (+)-Catechin 4'-O-beta-D-glucopyranoside (C4'G) and (+)-catechin 7-O-beta-D-glucopyranoside (C7G) were prepared enzymically using preparations from lentil and barley. In general, but with some exceptions, the (+)-catechin glucosides were more stable between pH 4 and 8 than (+)-catechin, with C3'G exhibiting greatest stability. The intestinal metabolism of (+)-catechin and all (+)-catechin glucosides in the gut was determined by perfusion of rat intestine in vivo. C3'G and C5G were extensively deglycosylated in the gut, and C3'G showed greatest apparent "absorption" as calculated by the difference between effluent and influent. The results show the potential of catechin glucosides, especially C3'G, as more stable prescursors of catechin.
Inhibitory effects of polyphenols toward HCV from the mangrove plant Excoecaria agallocha L.
作者:Yongxin Li、Shanjiang Yu、Dong Liu、Peter Proksch、Wenhan Lin
DOI:10.1016/j.bmcl.2011.11.109
日期:2012.1
Four new polyphenols namely excoecariphenols A-D (1-4) were isolated from the Chinese mangrove plant Excoecaria agallocha L. together with 23 known phenolic compounds. The structures of new compounds were elucidated on the basis of extensive spectroscopic analyses including IR, MS, NMR, and CD data. Excoecariphenols A and B presented as the unusual flavane-based 1-thioglycosides. Part of the isolated polyphenols were tested against hepatitis C NS3-4A protease and HCV RNA in huh 7.5 cells. Excoecariphenol D, corilagin, geraniin, and chebulagic acid showed potential inhibition toward HCV NS3-4A protease with IC50 values in a range of 3.45-9.03 mu M, while excoecariphenol D and corilagin inhibited HCV RNA in huh 7.5 cells significantly. A primary structure-activity relationship (SAR) is discussed. (C) 2011 Elsevier Ltd. All rights reserved.