Modulation of human neutrophils' oxidative burst by flavonoids
摘要:
Inflammation is a normal response towards tissue injury, but may become deleterious to the organism if uncontrolled. The overproduction of reactive species during the inflammatory process may cause or magnify the damage at inflammatory sites. Flavonoids have been suggested as therapeutic agents to avoid such damage, as these compounds exhibit anti-inflammatory activity, through the modulation of oxidative stress and signalling pathways. Both effects may attenuate neutrophils' activities at inflammatory sites. In this study, we investigated the structure/activity relationship of a series of flavonoids on the oxidative burst of human neutrophils in vitro, as a measure of its anti-inflammatory potential. Neutrophils were stimulated with phorbol-12-myristate-13-acetate, and fluorescence and chemiluminescence techniques were used to evaluate the generation of reactive oxygen species. All the tested flavonoids revealed the ability to modulate the neutrophil's oxidative burst. From the obtained results, the pivotal role of the catechol group in the B-ring was evidenced as well as the minor importance of the hydroxylations in the A-ring, which did not appear to be determinant for the activity, although clearly influencing the lipophilicity of the tested flavonoids. It is also clarified the importance of the methylation in the OH group at the B-ring catechol moiety. In conclusion, the obtained results uncover new possible strategies for the resolution of inflammatory processes, using flavonoids to modulate neutrophil's oxidative burst. (C) 2013 Elsevier Masson SAS. All rights reserved.
The present invention relates to substituted resorcinol derivatives which inhibit the activity of Heat Shock Protein HSP90. The compounds of the invention are therefore useful in treating proliferative diseases such as cancer and neurodegenerative diseases. The present invention also provides processes for preparing these compounds, pharmaceutical compositions comprising them, methods of treating diseases and the pharmaceutical compositions comprising these compounds.
The present invention relates to substituted resorcinol derivatives which inhibit the activity of Heat Shock Protein HSP90. The compounds of the invention are therefore useful in treating proliferative diseases such as cancer and neurodegenerative diseases. The present invention also provides processes for preparing these compounds, pharmaceutical compositions comprising them, methods of treating diseases and the pharmaceutical compositions comprising these compounds.
Synthesis and biological activity of 4-alkoxy chalcones: potential hydrophobic modulators of p-glycoprotein-mediated multidrug resistance
作者:Frédéric Bois、Ahcène Boumendjel、Anne-Marie Mariotte、Gwenaëlle Conseil、Attilio Di Petro
DOI:10.1016/s0968-0896(99)00218-7
日期:1999.12
A series of 4-alkoxy-2',4',6'-trihydroxychalcones have been synthesized and evaluated for their ability to inhibit P-glycoprotein-mediated multidrug resistance (MDR) by direct binding to a purified protein domain containing an ATP-binding site and a modulator-interacting region. The introduction of hydrophobic alkoxy groups at position 4 led to much more active compounds as compared to the parent chalcone. The binding affinity increased as a function of the chain length, up to the octyloxy derivative for which a K-D of 20 nM was obtained. (C) 1999 Elsevier Science Ltd. All rights reserved.
Halogenated Chalcones with High-Affinity Binding to P-Glycoprotein: Potential Modulators of Multidrug Resistance
作者:Frédéric Bois、Chantal Beney、Ahcène Boumendjel、Anne-Marie Mariotte、Gwenaëlle Conseil、Attilio Di Pietro
DOI:10.1021/jm9810194
日期:1998.10.1
Previous studies have shown that flavonoids are modulators of the transmembrane P-glycoprotein (P-gp) which mediates cell multidrug resistance. Some structural elements have been identified which seem to contribute to these compounds' activity. In the present study, a series of halogenated chalcones was prepared to further explore the structural requirements for the P-gp modulation. Four halogenated chalcones have been synthesized and evaluated as potential modulators of P-gp-mediated multidrug resistance of cancer cells by in vitro assays using a purified recombinant domain of the transporter containing the modulator binding site. Halogenated chalcones exhibited high-affinity binding, the 2',4', 6'-trihydroxy-4-iodochalcone behaving as the most potent compound with a K-D value in the nanomolar range.