摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

cyclopropenyl radical

中文名称
——
中文别名
——
英文名称
cyclopropenyl radical
英文别名
——
cyclopropenyl radical化学式
CAS
——
化学式
C3H3
mdl
——
分子量
39.0568
InChiKey
WRZQDSZUHZJIHC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.1
  • 重原子数:
    3
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

反应信息

  • 作为产物:
    描述:
    allyl radical 以 gaseous matrix 为溶剂, 生成 丙二烯炔丙基自由基cyclopropenecyclopropenyl radical丙炔乙炔 、 alkaline earth salt of/the/ methylsulfuric acid
    参考文献:
    名称:
    Photodissociation dynamics of the allyl radical
    摘要:
    The photochemistry and photodissociation dynamics of the allyl radical upon ultraviolet (UV) excitation is investigated in a molecular beam by using time- and frequency-resolved photoionization of hydrogen atoms with Lyman-α-radiation. The UV states of allyl decay by internal conversion to the ground state, forming vibrationally hot radicals that lose hydrogen atoms on a nanosecond time scale. Two channels are identified, formation of allene directly from allyl, and isomerization from allyl to 2-propenyl, with a subsequent hydrogen loss, resulting in both allene and propyne formation. The branching ratio is between 2:1 and 3:1, with direct formation of allene being the dominant reaction channel. This channel is associated with site-selective loss of hydrogen from the central carbon atom, as observed in experiments on isotopically labeled radicals. Ab initio calculations of the reaction pathways and Rice–Ramsperger–Kassel–Marcus (RRKM) calculations of the rates are in agreement with the mechanism and branching ratios. From the measured Doppler profiles a translational energy release of 14±1 kcal/mol is calculated. The calculated value of 66 kcal/mol for the barrier to the 1,2 hydrogen shift from allyl radical to 2-propenyl is confirmed by the experimental data.
    DOI:
    10.1063/1.478020
点击查看最新优质反应信息

文献信息

  • Photodissociation dynamics of the allyl radical
    作者:Hans-Jürgen Deyerl、Ingo Fischer、Peter Chen
    DOI:10.1063/1.478020
    日期:1999.1.15
    The photochemistry and photodissociation dynamics of the allyl radical upon ultraviolet (UV) excitation is investigated in a molecular beam by using time- and frequency-resolved photoionization of hydrogen atoms with Lyman-α-radiation. The UV states of allyl decay by internal conversion to the ground state, forming vibrationally hot radicals that lose hydrogen atoms on a nanosecond time scale. Two channels are identified, formation of allene directly from allyl, and isomerization from allyl to 2-propenyl, with a subsequent hydrogen loss, resulting in both allene and propyne formation. The branching ratio is between 2:1 and 3:1, with direct formation of allene being the dominant reaction channel. This channel is associated with site-selective loss of hydrogen from the central carbon atom, as observed in experiments on isotopically labeled radicals. Ab initio calculations of the reaction pathways and Rice–Ramsperger–Kassel–Marcus (RRKM) calculations of the rates are in agreement with the mechanism and branching ratios. From the measured Doppler profiles a translational energy release of 14±1 kcal/mol is calculated. The calculated value of 66 kcal/mol for the barrier to the 1,2 hydrogen shift from allyl radical to 2-propenyl is confirmed by the experimental data.
查看更多