Structure–Affinity Relationships (SARs) and Structure–Kinetics Relationships (SKRs) of Kv11.1 Blockers
摘要:
K(v)11.1 (hERG) blockers with comparable potencies but different binding kinetics might display divergent proarrhythmic risks. In the present study, we explored structure-kinetics relationships in four series of K(v)11.1 blockers next to their structure affinity relationships. We learned that despite dramatic differences in affinities and association rates, there were hardly any variations in the dissociation rate constants of these molecules with residence times (RTs) of a few minutes only. Hence, we synthesized 16 novel molecules, in particular in the pyridinium class of compounds, to further address this peculiar phenomenon. We found molecules with very short RTs (e.g., 0.34 min for 37) and much longer RTs (e.g., 105 min for 38). This enabled us to construct a k(on)-k(off)-K-D kinetic map for all compounds and subsequently divide the map into four provisional quadrants, providing a possible framework for a further and more precise categorization of K(v)11.1 blockers. Additionally, two representative compounds (21 and 38) were tested in patch clamp assays, and their RTs were linked to their functional IC50 values. Our findings strongly suggest the importance of the simultaneous study of ligand affinities and kinetic parameters, which may help to explain and predict K(v)11.1-mediated cardiotoxicity.
Structure–Affinity Relationships (SARs) and Structure–Kinetics Relationships (SKRs) of Kv11.1 Blockers
摘要:
K(v)11.1 (hERG) blockers with comparable potencies but different binding kinetics might display divergent proarrhythmic risks. In the present study, we explored structure-kinetics relationships in four series of K(v)11.1 blockers next to their structure affinity relationships. We learned that despite dramatic differences in affinities and association rates, there were hardly any variations in the dissociation rate constants of these molecules with residence times (RTs) of a few minutes only. Hence, we synthesized 16 novel molecules, in particular in the pyridinium class of compounds, to further address this peculiar phenomenon. We found molecules with very short RTs (e.g., 0.34 min for 37) and much longer RTs (e.g., 105 min for 38). This enabled us to construct a k(on)-k(off)-K-D kinetic map for all compounds and subsequently divide the map into four provisional quadrants, providing a possible framework for a further and more precise categorization of K(v)11.1 blockers. Additionally, two representative compounds (21 and 38) were tested in patch clamp assays, and their RTs were linked to their functional IC50 values. Our findings strongly suggest the importance of the simultaneous study of ligand affinities and kinetic parameters, which may help to explain and predict K(v)11.1-mediated cardiotoxicity.
Exhaustive Suzuki–Miyaura reactions of polyhalogenated heteroarenes with alkyl boronic pinacol esters
作者:Sébastien Laulhé、J. Miles Blackburn、Jennifer L. Roizen
DOI:10.1039/c7cc00997f
日期:——
A novel Suzuki–Miyaura protocol is described that enables the exhaustive alkylation of polychlorinated pyridines. This method facilitates a formal synthesis of normuscopyridine and the rapid assembly of a dumbbell shaped portion of a [2]rotaxane.
Selective and Serial Suzuki–Miyaura Reactions of Polychlorinated Aromatics with Alkyl Pinacol Boronic Esters
作者:Sébastien Laulhé、J. Miles Blackburn、Jennifer L. Roizen
DOI:10.1021/acs.orglett.6b02323
日期:2016.9.2
availability and low toxicity of the required reagents, mild reaction conditions, and functional group compatibility. Nevertheless, few conditions can be used to cross-couple alkyl boronic acids or esters with aryl halides, especially 2-pyridyl halides. Herein, we describe two novel Suzuki–Miyaura protocols that enable selective conversion of polychlorinated aromatics, with a focus on reactions to convert
KATALYSATORSYSTEME VOM TYP DER ZIEGLER-NATTA-KATALYSATOREN UND EIN VERFAHREN ZU DEREN HERSTELLUNG
申请人:Basell Polyolefine GmbH
公开号:EP1326899A2
公开(公告)日:2003-07-16
Catalyst systems of the ziegler-natta type and a method for production thereof
申请人:Fottinger Klaus
公开号:US20050075241A1
公开(公告)日:2005-04-07
A method for production of catalytic systems of the Ziegler-Natta type is characterised in comprising the following steps: A) bringing an inorganic metal oxide and a magnesium compound of formula MgR
n
X
2-n
into contact, where X=independently, fluorine, chlorine, bromine, iodine, hydrogen, NR
2
, OR, SR, SO
3
R or OC(O)R and R=independently, C
1
-C
20
linear, branched, or cyclic alkyl, a C
2
-C
10
alkenyl, an alkylaryl with 1-10 C atoms in the alkyl group and 6-20 C atoms in the aryl group, or a C
6
-C
18
aryl and n=1 or 2, then, B) bringing the intermediate product obtained in step A) into contact with a halogenating reagent, C) bringing the intermediate product obtained in step B) into contact with a) a tetravalent titanium compound, b) a metallo-organic compound of group 3 of the periodic system and c) optionally, an electron-donor compound and D) washing the product obtained in step C) with an aprotic solvent. The invention further relates to a catalytic system obtained as above and a method for the polymerisation of olefins.
[DE] KATALYSATORSYSTEME VOM TYP DER ZIEGLER-NATTA-KATALYSATOREN UND EIN VERFAHREN ZU DEREN HERSTELLUNG<br/>[EN] CATALYTIC SYSTEMS OF THE ZIEGLER-NATTA TYPE AND METHOD FOR PRODUCTION THEREOF<br/>[FR] SYSTEMES CATALYSEURS ZIEGLER-NATTA, ET LEUR PROCEDE DE PRODUCTION
申请人:BASELL POLYOLEFINE GMBH
公开号:WO2002032969A2
公开(公告)日:2002-04-25
Verfahren zur Herstellung von Katalysatorsystemen vom Typ der Ziegler-Natta-Katalysatoren, dadurch gekennzeichnet, dass es folgende Schritte umfasst: A) Kontaktieren eines anorganischen Metalloxides mit einer Magnesiumverbindung MgRnX2-n, worin X unabhängig voneinander Fluor, Chlor, Brom, Jod, Wasserstoff, NR2, OR, SR, SO3R oder OC(O)R, und R unabhängig voneinander ein C1C20 lineares, verzweigtes oder cyclisches Alkyl, ein C2-C10-Alkenyl, ein Alkylaryl mit 1-10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder ein C6-C18-Aryl bedeutet und n gleich 1 oder 2 ist, und anschliessend, B) Kontaktieren der nach Schritt A) erhaltenen Zwischenstufe mit einem Halogenierungsreagenz, C) Kontaktieren der nach Schritt B) erhaltenen Zwischenstufe mit a) einer tetravalenten Titanverbindung, b) einer mallorganischen Verbindung der Gruppe 3 des Periodensystems und c) gegebenenfalls einer Elektronendonorverbindung, und D) Waschen des nach Schritt C) erhaltenen Produktes mit einem aprotischen Lösungsmittel, damit erhältliche Katalysatorsysteme und ein Verfahren zur Polymerisation von Olefinen.