Rational Design, Synthesis, and Biological Evaluation of Heterocyclic Quinolones Targeting the Respiratory Chain of Mycobacterium tuberculosis
摘要:
A high-throughput screen (HTS) was undertaken against the respiratory chain dehydrogenase component, NADH:menaquinone oxidoreductase (Ndh) of Mycobacterium tuberculosis (Mtb). The 11000 compounds were selected for the HTS based on the known phenothiazine Ndh inhibitors, trifluoperazine and thioridazine. Combined HTS (11000 compounds) and in-house screening of a limited number of quinolones (50 compounds) identified similar to 100 hits and four distinct chemotypes, the most promising of which contained the quinolone core. Subsequent Mtb screening of the complete in-house quinolone library (350 compounds) identified a further similar to 90 hits across three quinolone subtemplates. Quinolones containing the amine-based side chain were selected as the pharmacophore for further modification, resulting in metabolically stable quinolones effective against multi drug resistant (MDR) Mtb. The lead compound, 42a (MTC420), displays acceptable antituberculosis activity (Mtb IC50 = 525 nM, Mtb Wayne IC50 = 76 nM, and MDR Mtb patient isolates IC50 = 140 nM) and favorable pharmacokinetic and toxicological profiles.
Rational Design, Synthesis, and Biological Evaluation of Heterocyclic Quinolones Targeting the Respiratory Chain of Mycobacterium tuberculosis
摘要:
A high-throughput screen (HTS) was undertaken against the respiratory chain dehydrogenase component, NADH:menaquinone oxidoreductase (Ndh) of Mycobacterium tuberculosis (Mtb). The 11000 compounds were selected for the HTS based on the known phenothiazine Ndh inhibitors, trifluoperazine and thioridazine. Combined HTS (11000 compounds) and in-house screening of a limited number of quinolones (50 compounds) identified similar to 100 hits and four distinct chemotypes, the most promising of which contained the quinolone core. Subsequent Mtb screening of the complete in-house quinolone library (350 compounds) identified a further similar to 90 hits across three quinolone subtemplates. Quinolones containing the amine-based side chain were selected as the pharmacophore for further modification, resulting in metabolically stable quinolones effective against multi drug resistant (MDR) Mtb. The lead compound, 42a (MTC420), displays acceptable antituberculosis activity (Mtb IC50 = 525 nM, Mtb Wayne IC50 = 76 nM, and MDR Mtb patient isolates IC50 = 140 nM) and favorable pharmacokinetic and toxicological profiles.
Combination of respiratory electron transport chain inhibitors with a cytochrome bd inhibitor
申请人:Liverpool School of Tropical Medicine
公开号:US10799494B2
公开(公告)日:2020-10-13
The present invention relates to a combination therapeutic product comprising one or more respiratory electron transport chain inhibitors and a cytochrome bd inhibitor, as defined herein, or a pharmaceutically acceptable salt thereof. The present invention also relates to pharmaceutical compositions comprising the combination therapeutic product and to the use of the combination therapeutic product in the treatment of mycobacterial infections, such as tuberculosis.
The present invention relates to a combination therapeutic product comprising one or more respiratory electron transport chain inhibitors and a cytochrome bd inhibitor, as defined herein, or a pharmaceutically acceptable salt thereof. The present invention also relates to pharmaceutical compositions comprising the combination therapeutic product and to the use of the combination therapeutic product in the treatment of mycobacterial infections, such as tuberculosis.
Rational Design, Synthesis, and Biological Evaluation of Heterocyclic Quinolones Targeting the Respiratory Chain of <i>Mycobacterium tuberculosis</i>
作者:W. David Hong、Peter D. Gibbons、Suet C. Leung、Richard Amewu、Paul A. Stocks、Andrew Stachulski、Pedro Horta、Maria L. S. Cristiano、Alison E. Shone、Darren Moss、Alison Ardrey、Raman Sharma、Ashley J. Warman、Paul T. P. Bedingfield、Nicholas E. Fisher、Ghaith Aljayyoussi、Sally Mead、Maxine Caws、Neil G. Berry、Stephen A. Ward、Giancarlo A. Biagini、Paul M. O’Neill、Gemma L. Nixon
DOI:10.1021/acs.jmedchem.6b01718
日期:2017.5.11
A high-throughput screen (HTS) was undertaken against the respiratory chain dehydrogenase component, NADH:menaquinone oxidoreductase (Ndh) of Mycobacterium tuberculosis (Mtb). The 11000 compounds were selected for the HTS based on the known phenothiazine Ndh inhibitors, trifluoperazine and thioridazine. Combined HTS (11000 compounds) and in-house screening of a limited number of quinolones (50 compounds) identified similar to 100 hits and four distinct chemotypes, the most promising of which contained the quinolone core. Subsequent Mtb screening of the complete in-house quinolone library (350 compounds) identified a further similar to 90 hits across three quinolone subtemplates. Quinolones containing the amine-based side chain were selected as the pharmacophore for further modification, resulting in metabolically stable quinolones effective against multi drug resistant (MDR) Mtb. The lead compound, 42a (MTC420), displays acceptable antituberculosis activity (Mtb IC50 = 525 nM, Mtb Wayne IC50 = 76 nM, and MDR Mtb patient isolates IC50 = 140 nM) and favorable pharmacokinetic and toxicological profiles.