摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,3,5-三甲基环己烷 | 1839-63-0

中文名称
1,3,5-三甲基环己烷
中文别名
六氫【草(之上)+米】
英文名称
1,3,5-trimethylcyclohexane
英文别名
1,3,5-Trimethyl-cyclohexan;3cis,5trans,1ref-Trimethyl-cyclohexan;cis,trans-1,3,5-Trimethylcyclohexan;cis,cis-1,3,5-Trimethylcyclohexan;cis-1,3,5-Trimethylcyclohexan
1,3,5-三甲基环己烷化学式
CAS
1839-63-0
化学式
C9H18
mdl
MFCD00042625
分子量
126.242
InChiKey
ODNRTOSCFYDTKF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -50 °C
  • 沸点:
    140°C
  • 密度:
    0.77
  • 闪点:
    19°C
  • 保留指数:
    853.7;849;849;840;840;859;834.7;857
  • 稳定性/保质期:
    如果按照规格使用和储存,则不会分解,不存在已知的危险反应,应避免接触氧化物。

计算性质

  • 辛醇/水分配系数(LogP):
    4
  • 重原子数:
    9
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

ADMET

毒理性
  • 副作用
神经毒素 - 急性溶剂综合症
Neurotoxin - Acute solvent syndrome
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
毒理性
  • 副作用
神经毒素 - 急性溶剂综合症
Neurotoxin - Acute solvent syndrome
来源:Haz-Map, Information on Hazardous Chemicals and Occupational Diseases

安全信息

  • 危险等级:
    3
  • 安全说明:
    S16,S33,S9
  • 危险类别码:
    R11
  • 海关编码:
    2902199090
  • 危险品运输编号:
    1993
  • 包装等级:
    II
  • 危险类别:
    3
  • 危险性防范说明:
    P210,P233,P240,P241+P242+P243,P280,P303+P361+P353,P370+P378,P403+P235,P501
  • 危险性描述:
    H225
  • 储存条件:
    保持贮藏器密封,并将其存放在阴凉、干燥的地方。确保工作环境有良好的通风或排气装置。

SDS

SDS:0a8f82f71bf2de92b23c0fbd9a164c92
查看
1,3,5-三甲基环己烷 修改号码:5

模块 1. 化学品
产品名称: 1,3,5-Trimethylcyclohexane
修改号码: 5

模块 2. 危险性概述
GHS分类
物理性危害
易燃液体 第2级
健康危害 未分类
环境危害 未分类
GHS标签元素
图标或危害标志
信号词 危险
危险描述 高度易燃液体和蒸气
防范说明
[预防] 远离热源/火花/明火/热表面。禁烟。
保持容器密闭。
使用防爆的电气/通风/照明设备。采取预防措施以防静电和火花引起的着火。
穿戴防护手套/护目镜/防护面具。
[急救措施] 皮肤接触:立即去除/脱掉所有被污染的衣物。用水清洗皮肤/淋浴。
[储存] 存放于通风良好处。保持凉爽。
[废弃处置] 根据当地政府规定把物品/容器交与工业废弃处理机构。

模块 3. 成分/组成信息
单一物质/混和物 单一物质
化学名(中文名): 1,3,5-三甲基环己烷
百分比: >98.0%(GC)
CAS编码: 1839-63-0
分子式: C9H18
1,3,5-三甲基环己烷 修改号码:5

模块 4. 急救措施
吸入: 将受害者移到新鲜空气处,保持呼吸通畅,休息。若感不适请求医/就诊。
皮肤接触: 立即去除/脱掉所有被污染的衣物。用水清洗皮肤/淋浴。
若皮肤刺激或发生皮疹:求医/就诊。
眼睛接触: 用水小心清洗几分钟。如果方便,易操作,摘除隐形眼镜。继续清洗。
如果眼睛刺激:求医/就诊。
食入: 若感不适,求医/就诊。漱口。
紧急救助者的防护: 救援者需要穿戴个人防护用品,比如橡胶手套和气密性护目镜。

模块 5. 消防措施
合适的灭火剂: 干粉,泡沫,二氧化碳
不适用的灭火剂: 水(有可能扩大灾情。)
特定方法: 从上风处灭火,根据周围环境选择合适的灭火方法。
非相关人员应该撤离至安全地方。
周围一旦着火:喷水,保持容器冷却。如果安全,消除一切火源。
消防员的特殊防护用具: 灭火时,一定要穿戴个人防护用品。

模块 6. 泄漏应急处理
个人防护措施,防护用具, 使用个人防护用品。远离溢出物/泄露处并处在上风处。确保足够通风。
紧急措施: 泄露区应该用安全带等圈起来,控制非相关人员进入。
环保措施: 防止进入下水道。
控制和清洗的方法和材料: 回收到密闭容器前用干砂或惰性吸收剂吸收泄漏物。一旦大量泄漏,筑堤控制。附着
物或收集物应该根据相关法律法规废弃处置。
副危险性的防护措施 移除所有火源。一旦发生火灾应该准备灭火器。使用防火花工具和防爆设备。

模块 7. 操作处置与储存
处理
技术措施: 在通风良好处进行处理。穿戴合适的防护用具。防止烟雾产生。远离热源/火花/明火
/热表面。禁烟。采取措施防止静电积累。使用防爆设备。处理后彻底清洗双手和脸。
注意事项: 如果可能,使用封闭系统。如果蒸气或浮质产生,使用通风、局部排气。
操作处置注意事项: 避免接触皮肤、眼睛和衣物。
贮存
储存条件: 保持容器密闭。存放于凉爽、阴暗、通风良好处。
远离不相容的材料比如氧化剂存放。
包装材料: 依据法律。

模块 8. 接触控制和个体防护
工程控制: 尽可能安装封闭体系或局部排风系统。同时安装淋浴器和洗眼器。
个人防护用品
呼吸系统防护: 防毒面具。依据当地和政府法规。
手部防护: 防护手套。
眼睛防护: 安全防护镜。如果情况需要,佩戴面具。
皮肤和身体防护: 防护服。如果情况需要,穿戴防护靴。

模块 9. 理化特性
液体
外形(20°C):
外观: 透明
颜色: 无色-几乎无色
气味: 无资料
pH: 无数据资料
1,3,5-三甲基环己烷 修改号码:5

模块 9. 理化特性
熔点: 无资料
沸点/沸程 140 °C
闪点: 19°C
爆炸特性
爆炸下限: 无资料
爆炸上限: 无资料
密度: 0.77
溶解度:
[水] 无资料
[其他溶剂] 无资料
自燃温度: 314°C

模块 10. 稳定性和反应性
化学稳定性: 一般情况下稳定。
危险反应的可能性: 未报道特殊反应性。
避免接触的条件: 火花, 明火, 静电
须避免接触的物质 氧化剂
危险的分解产物: 一氧化碳, 二氧化碳

模块 11. 毒理学信息
急性毒性: 无资料
对皮肤腐蚀或刺激: 无资料
对眼睛严重损害或刺激: 无资料
生殖细胞变异原性: 无资料
致癌性:
IARC = 无资料
NTP = 无资料
生殖毒性: 无资料

模块 12. 生态学信息
生态毒性:
鱼类: 无资料
甲壳类: 无资料
藻类: 无资料
残留性 / 降解性: 无资料
潜在生物累积 (BCF): 无资料
土壤中移动性
log水分配系数: 无资料
土壤吸收系数 (Koc): 无资料
亨利定律 无资料
constant(PaM3/mol):

模块 13. 废弃处置
如果可能,回收处理。请咨询当地管理部门。建议在装有后燃和洗涤装置的化学焚烧炉中焚烧,焚烧时需要特别注
意该物质是高度可燃的。废弃处置时请遵守国家、地区和当地的所有法规。

模块 14. 运输信息
联合国分类: 第3类 易燃液体 。
UN编号: 3295
1,3,5-三甲基环己烷 修改号码:5

模块 14. 运输信息
正式运输名称: 碳氢化合物, 液体, 不另作详细说明
包装等级: II

模块 15. 法规信息
《危险化学品安全管理条例》(2002年1月26日国务院发布,2011年2月16日修订): 针对危险化学品的安全使用、
生产、储存、运输、装卸等方面均作了相应的规定。


模块16 - 其他信息
N/A

制备方法与用途

制备方法

溶剂、有机合成。

用途简介

暂无内容。

用途

溶剂、有机合成。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • Titanium(III)-Oxo Clusters in a Metal–Organic Framework Support Single-Site Co(II)-Hydride Catalysts for Arene Hydrogenation
    作者:Pengfei Ji、Yang Song、Tasha Drake、Samuel S. Veroneau、Zekai Lin、Xiandao Pan、Wenbin Lin
    DOI:10.1021/jacs.7b11241
    日期:2018.1.10
    clusters for supporting single-site catalysts. Herein we report that the Ti8(μ2-O)8(μ2-OH)4 node of the Ti-BDC MOF (MIL-125) provides a single-site model of the classical TiO2 support to enable CoII-hydride-catalyzed arene hydrogenation. The catalytic activity of the supported CoII-hydride is strongly dependent on the reduction of the Ti-oxo cluster, definitively proving the pivotal role of TiIII in the performance
    二氧化钛 (TiO2) 因其独特的强金属-载体相互作用而在化学工业中广泛用作有效的催化剂载体。已经提出了许多建议在宏观水平上合理化这种影响,但由于 TiO2 表面上存在多种催化物质,潜在的分子机制尚不清楚。这一挑战可以通过金属有机框架 (MOF) 来解决,该框架具有明确定义的金属氧/羟基团簇,用于支持单中心催化剂。在此,我们报告了 Ti-BDC MOF (MIL-125) 的 Ti8(μ2-O)8(μ2-OH)4 节点提供了经典 TiO2 载体的单中心模型,以实现 CoII-氢化物催化的芳烃氢化. 负载型 CoII-氢化物的催化活性强烈依赖于 Ti-oxo 簇的还原,最终证明了 TiIII 在负载型催化剂性能中的关键作用。因此,这项工作提供了 Ti-oxo 簇的分子精确模型,用于低估 TiO2 负载的多相催化剂的强金属-载体相互作用。
  • Effect of the Crystallographic Phase of Ruthenium Nanosponges on Arene and Substituted-Arene Hydrogenation Activity
    作者:Sourav Ghosh、Balaji R. Jagirdar
    DOI:10.1002/cctc.201800287
    日期:2018.7.19
    Identifying crystal structure sensitivity of a catalyst for a particular reaction is an important issue in heterogeneous catalysis. In this context, the activity of different phases of ruthenium catalysts for benzene hydrogenation has not yet been investigated. The synthesis of hcp and fcc phases of ruthenium nanosponges by chemical reduction method has been described. Reduction of ruthenium chloride
    确定催化剂对特定反应的晶体结构敏感性是非均相催化中的重要问题。在这种情况下,尚未研究钌的不同相催化剂对苯加氢的活性。已经描述了通过化学还原法合成钌纳米海绵的hcp和fcc相。使用氨硼烷(AB)和氯化钌还原叔丁胺硼烷(TBAB)作为还原剂在hcp相中产生了钌纳米海绵。另一方面,使用硼氢化钠(SB)还原可得到呈FCC相的钌纳米海绵。与用于苯加氢的FCC钌纳米海绵相比,发现所制备的HCP钌纳米海绵具有催化活性。发现六氯环己烷钌纳米海绵具有热稳定性,可在数个循环中循环使用。这种自支撑的六氯环己烷钌纳米海绵对各种取代苯的氢化显示出出色的催化活性。此外,发现钌纳米海绵催化剂可将苯酚和芳基醚的芳族核选择性氢化成各自的脂环族产物,而不会发生C-O键的氢解。
  • Low temperature hydrodeoxygenation of phenols under ambient hydrogen pressure to form cyclohexanes catalysed by Pt nanoparticles supported on H-ZSM-5
    作者:Hidetoshi Ohta、Kentaro Yamamoto、Minoru Hayashi、Go Hamasaka、Yasuhiro Uozumi、Yutaka Watanabe
    DOI:10.1039/c5cc05607a
    日期:——

    The hydrodeoxygenation of various phenols to form cyclohexanes under mild conditions (ambient H2 pressure and 110 °C) was developed by using a Pt/H-ZSM-5 catalyst and octane as the solvent.

    在温和条件下(常压氢气和110°C),使用Pt/H-ZSM-5催化剂和辛烷作为溶剂,开发了将各种酚进行氢脱氧反应形成环己烷的方法。

  • Ruthenium‐Catalyzed Dehydrogenation Through an Intermolecular Hydrogen Atom Transfer Mechanism
    作者:Lin Huang、Alessandro Bismuto、Simon A. Rath、Nils Trapp、Bill Morandi
    DOI:10.1002/anie.202015837
    日期:2021.3.22
    The direct dehydrogenation of alkanes is among the most efficient ways to access valuable alkene products. Although several catalysts have been designed to promote this transformation, they have unfortunately found limited applications in fine chemical synthesis. Here, we report a conceptually novel strategy for the catalytic, intermolecular dehydrogenation of alkanes using a ruthenium catalyst. The combination
    烷烃直接脱氢是获得有价值的烯烃产品的最有效方法之一。尽管已经设计了几种催化剂来促进这种转变,但不幸的是它们在精细化学合成中的应用有限。在这里,我们报告了一种使用钌催化剂催化烷烃分子间脱氢的概念新颖的策略。氧化还原活性配体和空间位阻芳基自由基中间体的组合释放了这种新策略。重要的是,已经进行了机理研究,为进一步开发这种新型催化脱氢系统提供了概念框架。
  • Hydrogenation of arenes and N-heteroaromatic compounds over ruthenium nanoparticles on poly(4-vinylpyridine): a versatile catalyst operating by a substrate-dependent dual site mechanism
    作者:Minfeng Fang、Nataliya Machalaba、Roberto A. Sánchez-Delgado
    DOI:10.1039/c1dt10801h
    日期:——
    A nanostructured catalyst composed of Ru nanoparticles immobilized on poly(4-vinylpyridine) (PVPy) has been synthesized by NaBH4 reduction of RuCl3·3H2O in the presence of the polymer in methanol at room temperature. TEM measurements show well-dispersed Ru nanoparticles with an average diameter of 3.1 nm. Both powder XRD patterns and XPS data indicate that the Ru particles are predominantly in the zerovalent state. The new catalyst is efficient for the hydrogenation of a wide variety of aromatic hydrocarbons and N-heteroaromatic compounds representative of components of petroleum-derived fuels. The experimental data indicate the existence of two distinct active sites in the nanostructure that lead to two parallel hydrogenation pathways, one for simple aromatics involving conventional homolytic hydrogen splitting on Ru and a second one for N-heteroaromatics taking place via a novel heterolytic hydrogen activation on the catalyst surface, assisted by the basic pyridine groups of the support.
    通过在室温下将RuCl3·3H2O在聚(4-乙烯基吡啶)(PVPy)存在下用NaBH4还原于甲醇中,合成了一种由Ru纳米颗粒固定在PVPy上的纳米结构催化剂。TEM测量显示,平均直径为3.1 nm的良好分散Ru纳米颗粒。粉末XRD图谱和XPS数据显示,Ru颗粒主要处于零价态。这种新型催化剂对广泛芳香烃和代表石油衍生燃料成分的N-杂芳香化合物的氢化反应效率高。实验数据表明,纳米结构中存在两种不同的活性位点,导致两种平行的氢化途径,一种是对简单芳香烃,涉及Ru上的传统均裂氢裂解,另一种是对N-杂芳香化合物,通过催化剂表面上的新型异裂氢活化进行,得到了载体中碱性吡啶基团的辅助。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台