Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species
作者:Bin Zhao、Rui Shang、Guang-Zu Wang、Shaohong Wang、Hui Chen、Yao Fu
DOI:10.1021/acscatal.9b04699
日期:2020.1.17
dual ligand effect and the irradiation effect in the catalytic cycle. The reaction is suggested to proceed via a hybrid alkyl Pd(I)-radical species generated by inner-sphere electron transfer of phosphine-coordinated Pd(0) species with alkyl bromide. This intriguing hybrid alkyl Pd(I)-radical species is elucidated by theoretical calculation to be a triplet species coordinated by three phosphine atoms
20-hydroxyecdysone. Because synthetic EcR ligands disrupt the normal growth of insects, they are attractive candidates for new insecticides. In this study, the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method was used to predict the binding activity of EcR ligands. Validity analyses using 40 known EcR ligands showed that the binding activity was satisfactorily predicted when the ligand conformational