Discovery of Potent Cyclic GMP Phosphodiesterase Inhibitors. 2-Pyridyl- and 2-Imidazolylquinazolines Possessing Cyclic GMP Phosphodiesterase and Thromboxane Synthesis Inhibitory Activities
摘要:
Moderate cyclic GMP phosphodiesterase (cGMP-PDE, PDE V) inhibitor 2-phenyl-4-anilino-quinazoline (1) was identified utilizing MultiCASE assisted drug design (MCADD) technology. Modification of compound 1 was conducted at the 2-, 4-, and 6-positions of the quinazoline ring for enhancement of cGMP-PDE inhibitory activity. The 6-substituted 2-(imidazol-1-yl)-quinazolines are 1000 times more potent in in vitro PDE V enzyme assay than the well-known inhibitor zaprinast. The 6-substituted derivatives of 2-(3-pyridyl)quinazoline 84 and 2-(imidazol-1-yl)quinazoline 86 exhibited more than 1000-fold selectivity for PDE V over the other four PDE isozymes. In addition, cGMP-PDE inhibitors 64, 65, and 73 were found to have an additional property of thromboxane synthesis inhibitory activity.
Discovery of Potent Cyclic GMP Phosphodiesterase Inhibitors. 2-Pyridyl- and 2-Imidazolylquinazolines Possessing Cyclic GMP Phosphodiesterase and Thromboxane Synthesis Inhibitory Activities
作者:Sung J. Lee、Yoshitaka Konishi、Dingwei T. Yu、Tamara A. Miskowski、Christopher M. Riviello、Orest T. Macina、Manton R. Frierson、Kigen Kondo、Masafumi Sugitani
DOI:10.1021/jm00018a014
日期:1995.9
Moderate cyclic GMP phosphodiesterase (cGMP-PDE, PDE V) inhibitor 2-phenyl-4-anilino-quinazoline (1) was identified utilizing MultiCASE assisted drug design (MCADD) technology. Modification of compound 1 was conducted at the 2-, 4-, and 6-positions of the quinazoline ring for enhancement of cGMP-PDE inhibitory activity. The 6-substituted 2-(imidazol-1-yl)-quinazolines are 1000 times more potent in in vitro PDE V enzyme assay than the well-known inhibitor zaprinast. The 6-substituted derivatives of 2-(3-pyridyl)quinazoline 84 and 2-(imidazol-1-yl)quinazoline 86 exhibited more than 1000-fold selectivity for PDE V over the other four PDE isozymes. In addition, cGMP-PDE inhibitors 64, 65, and 73 were found to have an additional property of thromboxane synthesis inhibitory activity.
Copper-catalyzed transformation of ketones to amides via C(CO)–C(alkyl) bond cleavage directed by picolinamide
cleavage of the C(CO)–C(alkyl) bond leading to C–N bondformation with a chelation-assist from N-containing directing groups is described. Inexpensive Cu(II)-acetate serves as a convenient catalyst for the transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organicsynthesis and provides a new strategy for C–C bond cleavage.
Collaborative Virtual Screening Identifies a 2-Aryl-4-aminoquinazoline Series with Efficacy in an <i>In Vivo</i> Model of <i>Trypanosoma cruzi</i> Infection