摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-八联异戊烯基苯酚 | 42187-47-3

中文名称
2-八联异戊烯基苯酚
中文别名
——
英文名称
2-octaprenylphenol
英文别名
2-(3,7,11,15,19,23,27,31-Octamethyldotriaconta-2,6,10,14,18,22,26,30-octaenyl)phenol
2-八联异戊烯基苯酚化学式
CAS
42187-47-3
化学式
C46H70O
mdl
——
分子量
639.061
InChiKey
VUNQJPPPTJIREN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    16.6
  • 重原子数:
    47
  • 可旋转键数:
    23
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.52
  • 拓扑面积:
    20.2
  • 氢给体数:
    1
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    4-hydroxy-3-octaprenylbenzoic acid 在 UbiD from E. coli BL21 、 UbiX from E. coli BL21 、 sodium chloride 作用下, 以 aq. phosphate buffer 为溶剂, 生成 2-八联异戊烯基苯酚
    参考文献:
    名称:
    Isofunctional Enzymes PAD1 and UbiX Catalyze Formation of a Novel Cofactor Required by Ferulic Acid Decarboxylase and 4-Hydroxy-3-polyprenylbenzoic Acid Decarboxylase
    摘要:
    The decarboxylation of antimicrobial aromatic acids such as phenylacrylic acid (cinnamic acid) and ferulic acid by yeast requires two enzymes described as phenylacrylic acid decarboxylase (PAD1) and ferulic acid decarboxylase (FDC). These enzymes are of interest for various biotechnological applications, such as the production of chemical feedstocks from lignin under mild conditions. However, the specific role of each protein in catalyzing the decarboxylation reaction remains unknown. To examine this, we have overexpressed and purified both PAD1 and FDC from E. coli. We demonstrate that PAD1 is a flavin mononucleotide (FMN)-containing protein. However, it does not function as a decarboxylase. Rather, PAD1 catalyzes the formation of a novel, diffusible cofactor required by FDC for decarboxylase activity. Coexpression of FDC and PAD1 results in the production of FDC with high levels cofactor bound. Holo-FDC catalyzes the decarboxylation of phenylacrylic acid, coumaric acid and ferulic acid with apparent kcat ranging from 1.44.6 s(-1). The UV-visible and mass spectra of the cofactor indicate that it appears to be a novel, modified form of reduced FMN; however, its instability precluded determination of its structure. The E. coli enzymes UbiX and UbiD are related by sequence to PAD1 and FDC respectively and are involved in the decarboxylation of 4-hydroxy-3-octaprenylbenzoic acid, an intermediate in ubiquinone biosynthesis. We found that endogenous UbiX can also activate FDC. This implies that the same cofactor is required for decarboxylation of 4-hydroxy-3-polyprenylbenzoic acid by UbiD and suggests a wider role for this cofactor in metabolism.
    DOI:
    10.1021/cb5008103
点击查看最新优质反应信息

文献信息

  • Advanced drug development and manufacturing
    申请人:Los Alamos National Security, LLC
    公开号:EP2511844A2
    公开(公告)日:2012-10-17
    There is described an apparatus for measuring protein characteristics comprising an X-ray fluorescence (XRF) spectrometer comprising a source of polychromatic X-rays, an X-ray detector, a protein, a molecule that has been exposed to and at least weakly binds to the protein, a plurality of X-ray fluorescence signal data obtained by irradiating chemical elements in the protein and molecule with the polychromatic X-rays and a security system for maintaining records for the data from the plurality of X-ray fluorescence signal measurements. There is also described an x-ray microscope for measuring a sample.
    描述了一种测量蛋白质特性的仪器,该仪器包括一个 X 射线荧光 (XRF) 光谱仪,其中包括一个多色 X 射线源、一个 X 射线探测器、一个蛋白质、一个已暴露于该蛋白质并至少与该蛋白质弱结合的分子、通过用多色 X 射线照射蛋白质和分子中的化学元素而获得的多个 X 射线荧光信号数据,以及一个用于维护多个 X 射线荧光信号测量数据记录的安全系统。此外,还介绍了一种用于测量样品的 X 射线显微镜。
  • X-ray microscope
    申请人:XRpro Sciences, Inc.
    公开号:EP2511844B1
    公开(公告)日:2015-08-12
  • Advanced Drug Development and Manufacturing
    申请人:XRpro Sciences, Inc.
    公开号:US20150309021A1
    公开(公告)日:2015-10-29
    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical. For estimating the binding selectivities of a chemical versus chemical analogs, for measuring post translational modification of proteins, and for drug manufacturing.
  • Isofunctional Enzymes PAD1 and UbiX Catalyze Formation of a Novel Cofactor Required by Ferulic Acid Decarboxylase and 4-Hydroxy-3-polyprenylbenzoic Acid Decarboxylase
    作者:Fengming Lin、Kyle L. Ferguson、David R. Boyer、Xiaoxia Nina Lin、E. Neil G. Marsh
    DOI:10.1021/cb5008103
    日期:2015.4.17
    The decarboxylation of antimicrobial aromatic acids such as phenylacrylic acid (cinnamic acid) and ferulic acid by yeast requires two enzymes described as phenylacrylic acid decarboxylase (PAD1) and ferulic acid decarboxylase (FDC). These enzymes are of interest for various biotechnological applications, such as the production of chemical feedstocks from lignin under mild conditions. However, the specific role of each protein in catalyzing the decarboxylation reaction remains unknown. To examine this, we have overexpressed and purified both PAD1 and FDC from E. coli. We demonstrate that PAD1 is a flavin mononucleotide (FMN)-containing protein. However, it does not function as a decarboxylase. Rather, PAD1 catalyzes the formation of a novel, diffusible cofactor required by FDC for decarboxylase activity. Coexpression of FDC and PAD1 results in the production of FDC with high levels cofactor bound. Holo-FDC catalyzes the decarboxylation of phenylacrylic acid, coumaric acid and ferulic acid with apparent kcat ranging from 1.44.6 s(-1). The UV-visible and mass spectra of the cofactor indicate that it appears to be a novel, modified form of reduced FMN; however, its instability precluded determination of its structure. The E. coli enzymes UbiX and UbiD are related by sequence to PAD1 and FDC respectively and are involved in the decarboxylation of 4-hydroxy-3-octaprenylbenzoic acid, an intermediate in ubiquinone biosynthesis. We found that endogenous UbiX can also activate FDC. This implies that the same cofactor is required for decarboxylation of 4-hydroxy-3-polyprenylbenzoic acid by UbiD and suggests a wider role for this cofactor in metabolism.
查看更多

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸 黄黄质 黄钟花醌 黄质醛 黄褐毛忍冬皂苷A 黄蝉花素 黄蝉花定