Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum
作者:Xiaochun Li、Rita Roberti、Günter Blobel
DOI:10.1038/nature13797
日期:2015.1
Solving the X-ray crystal structure of a Î14-sterol reductase and homologue of human C14SR and DHCR7, two enzymes that reduce specific carbonâcarbon double bonds in the cholesterol biosynthetic pathway, may provide insight into how specific mutations in DHCR7 and lamin B receptor lead to human diseases. Sterols are found in animals, plants, fungi and some prokaryotes, where they serve a broad range of biological functions. The most abundant sterol in animals is cholesterol, which helps maintain the strength and permeability of the plasma membrane. Dozens of integral membrane enzymes are required for cholesterol synthesis and structures have been determined for only a few of them. Here Xiaochun Li et al. report the X-ray crystal structure of a Î14-sterol reductase from the methanotrophic bacterium Methylomicrobium alcaliphilum at 2.7 Ã
resolution. This enzyme is a homologue of human C14SR and DHCR7, enzymes that reduce specific carbonâcarbon double bonds in the cholesterol biosynthetic pathway. Its structure reveals two interconnected pockets, one cytoplasmic-facing and containing the NADPH-binding pocket, the other containing a lipid-bilayer-facing cavity that may contain the sterol-binding pocket. Analysis of this enzyme structure provide some insight into how specific mutations in DHCR7 and LBR lead to human diseases. Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Î14 -sterol reductase (C14SR, also known as TM7SF2), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbonâcarbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Î14-sterol reductase (MaSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z (a homologue of human C14SR, LBR and DHCR7) with the cofactor NADPH. The enzyme contains ten transmembrane segments (TM1â10). Its catalytic domain comprises the carboxy-terminal half (containing TM6â10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves that MaSR1 can reduce the double bond of a cholesterol biosynthetic intermediate, demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases.
解析一个Δ14-甾醇还原酶的X射线晶体结构,以及它与人类C14SR和DHCR7的同源物(这两种酶在胆固醇生物合成途径中还原特定的碳–碳双键),可能会为了解DHCR7和层粘连蛋白B受体的特定突变如何导致人类疾病提供线索。甾醇在动物、植物、真菌和一些原核生物中普遍存在,发挥着广泛的生物功能。在动物中,胆固醇是最丰富的甾醇,它有助于维持细胞膜的强度和渗透性。胆固醇合成需要几十种整合膜酶,目前只有少数几种的结构已被确定。在这里,Xiaochun Li等人报告了一种来自甲烷营养细菌Methylomicrobium alcaliphilum的Δ14-甾醇还原酶的X射线晶体结构,分辨率为2.7 Å。这种酶是人类C14SR和DHCR7的同源物,后者在胆固醇生物合成途径中还原特定的碳–碳双键。其结构揭示了两个相互连接的口袋,一个朝向细胞质并包含NADPH结合口袋,另一个包含一个可能包含甾醇结合口袋的脂质双层面向腔体。对该酶结构的分析为理解DHCR7和LBR的特定突变如何导致人类疾病提供了一些线索。甾醇是大多数生命形式中必不可少的生物分子。甾醇还原酶包括Δ14-甾醇还原酶(C14SR,也称为TM7SF2)、7-脱氢胆固醇还原酶(DHCR7)和24-脱氢胆固醇还原酶(DHCR24),在甾醇生物合成中使用还原辅因子减少甾醇部分特定的碳–碳双键。层粘连蛋白B受体(LBR)是一个整合内核膜蛋白,也含有一个功能性C14SR结构域。在这里,我们报告了一种来自甲烷营养细菌Methylomicrobium alcaliphilum 20Z的Δ14-甾醇还原酶(MaSR1)的晶体结构,它与辅因子NADPH结合。该酶包含十个跨膜段(TM1–10)。其催化域由羧基末端一半(包含TM6–10)构成,并包围两个相互连接的口袋,其中一个面向细胞质并容纳NADPH,而另一个从脂质双层可及。与可溶性类固醇5β-还原酶结构的比较表明,NADPH还原末端在两个口袋的交界处与甾醇底物相接触。甾醇还原酶活性测定证明MaSR1可以还原胆固醇生物合成中间体的双键,显示出与人类C14SR的功能保守性。因此,我们的结构作为整合膜甾醇还原酶的原型提供了关于DHCR7和LBR突变与先天性人类疾病的分子见解。