摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Xeowyzqeqlgbin-oahllokosa- | 178877-31-1

中文名称
——
中文别名
——
英文名称
Xeowyzqeqlgbin-oahllokosa-
英文别名
(1S)-1-(chloromethyl)-5-hydroxy-3-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-1,2-dihydrobenzo[e]indole-8-carbonitrile
Xeowyzqeqlgbin-oahllokosa-化学式
CAS
178877-31-1
化学式
C26H22ClN3O5
mdl
——
分子量
491.931
InChiKey
XEOWYZQEQLGBIN-OAHLLOKOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.3
  • 重原子数:
    35
  • 可旋转键数:
    5
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.23
  • 拓扑面积:
    108
  • 氢给体数:
    2
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    Xeowyzqeqlgbin-oahllokosa- 在 sodium hydride 作用下, 以 四氢呋喃N,N-二甲基甲酰胺 为溶剂, 反应 0.5h, 以99%的产率得到(1R,13S)-8-oxo-11-(5,6,7-trimethoxy-1H-indole-2-carbonyl)-11-azatetracyclo[8.4.0.01,13.02,7]tetradeca-2(7),3,5,9-tetraene-4-carbonitrile
    参考文献:
    名称:
    Synthesis, Chemical Properties, and Preliminary Evaluation of Substituted CBI Analogs of CC-1065 and the Duocarmycins Incorporating the 7-Cyano-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one Alkylation Subunit:  Hammett Quantitation of the Magnitude of Electronic Effects on Functional Reactivity
    摘要:
    The synthesis of 7-cyano-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CCBI), a substituted CBI derivative bearing a C7 cyano group, is described in efforts that establish the magnitude of potential electronic effects on the functional reactivity of the agents. The CCBI alkylation subunit was prepared by a modified Stobbe condensation/Friedel-Crafts acylation for generation of the appropriately functionalized naphthalene precursors followed by 5-exo-trig aryl radical-alkene cyclization for synthesis of the 1,2-dihydro-3H-benz[e]indole skeleton and final Ar-3' alkylation for introduction of the activated cyclopropane. The most concise approach provided the CCBI subunit and its immediate precursor in 14-15 steps in superb overall conversions (15-20%). Resolution of an immediate CCBI precursor and its incorporation into both enantiomers of 34-39, analogs of CC-1065 and the duocarmycins, are detailed. A study of the solvolysis reactivity and regioselectivity of N-BOC-CCBI (25) revealed that introduction of the C7 nitrile slowed the rate of solvolysis but only to a surprisingly small extent. Classical Hammett quantitation of the effect provided a remarkably small rho (-0.3), indicating an exceptionally small C7 substituent electronic effect on functional reactivity. Additional kinetic studies of acid-catalyzed nucleophilic addition proved inconsistent with C4 carbonyl protonation as the slow and rate-determining step but consistent with a mechanism in which protonation is rapid and reversible followed by slow and rate-determining nucleophilic addition to the cyclopropane requiring both the presence and assistance of a nucleophile (S(N)2 mechanism). No doubt this contributes to the DNA alkylation selectivity of this class of agents and suggests that the positioning of an accessible nucleophile (adenine N3) and not C4 carbonyl protonation is the rate-determining step controlling the sequence selectivity of the DNA alkylation reaction, This small electronic effect on the solvolysis rate had no impact on the solvolysis regioselectivity, and stereoelectronically-controlled nucleophilic addition to the least substituted carbon of the activated cyclopropane was observed exclusively. Consistent with past studies, a direct relationship between solvolysis stability and cytotoxic potency was observed with the CCBI-derived agents providing the most potent analogs in the CBI series, and these observations were related to the predictable Hammett substituent effects. For the natural enantiomers, this unusually small electronic effect on functional reactivity had no perceptible effect on their DNA alkylation selectivity. Similar effects of the C7 cyano substituent on the unnatural enantiomers were observed, and they proved to be 4-10x more effective than the corresponding CBI-based unnatural enantiomers and 4-70x less potent than the CCBI natural enantiomers.
    DOI:
    10.1021/jo9605298
  • 作为产物:
    描述:
    参考文献:
    名称:
    Synthesis, Chemical Properties, and Preliminary Evaluation of Substituted CBI Analogs of CC-1065 and the Duocarmycins Incorporating the 7-Cyano-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one Alkylation Subunit:  Hammett Quantitation of the Magnitude of Electronic Effects on Functional Reactivity
    摘要:
    The synthesis of 7-cyano-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CCBI), a substituted CBI derivative bearing a C7 cyano group, is described in efforts that establish the magnitude of potential electronic effects on the functional reactivity of the agents. The CCBI alkylation subunit was prepared by a modified Stobbe condensation/Friedel-Crafts acylation for generation of the appropriately functionalized naphthalene precursors followed by 5-exo-trig aryl radical-alkene cyclization for synthesis of the 1,2-dihydro-3H-benz[e]indole skeleton and final Ar-3' alkylation for introduction of the activated cyclopropane. The most concise approach provided the CCBI subunit and its immediate precursor in 14-15 steps in superb overall conversions (15-20%). Resolution of an immediate CCBI precursor and its incorporation into both enantiomers of 34-39, analogs of CC-1065 and the duocarmycins, are detailed. A study of the solvolysis reactivity and regioselectivity of N-BOC-CCBI (25) revealed that introduction of the C7 nitrile slowed the rate of solvolysis but only to a surprisingly small extent. Classical Hammett quantitation of the effect provided a remarkably small rho (-0.3), indicating an exceptionally small C7 substituent electronic effect on functional reactivity. Additional kinetic studies of acid-catalyzed nucleophilic addition proved inconsistent with C4 carbonyl protonation as the slow and rate-determining step but consistent with a mechanism in which protonation is rapid and reversible followed by slow and rate-determining nucleophilic addition to the cyclopropane requiring both the presence and assistance of a nucleophile (S(N)2 mechanism). No doubt this contributes to the DNA alkylation selectivity of this class of agents and suggests that the positioning of an accessible nucleophile (adenine N3) and not C4 carbonyl protonation is the rate-determining step controlling the sequence selectivity of the DNA alkylation reaction, This small electronic effect on the solvolysis rate had no impact on the solvolysis regioselectivity, and stereoelectronically-controlled nucleophilic addition to the least substituted carbon of the activated cyclopropane was observed exclusively. Consistent with past studies, a direct relationship between solvolysis stability and cytotoxic potency was observed with the CCBI-derived agents providing the most potent analogs in the CBI series, and these observations were related to the predictable Hammett substituent effects. For the natural enantiomers, this unusually small electronic effect on functional reactivity had no perceptible effect on their DNA alkylation selectivity. Similar effects of the C7 cyano substituent on the unnatural enantiomers were observed, and they proved to be 4-10x more effective than the corresponding CBI-based unnatural enantiomers and 4-70x less potent than the CCBI natural enantiomers.
    DOI:
    10.1021/jo9605298
点击查看最新优质反应信息

文献信息

  • Synthesis, Chemical Properties, and Preliminary Evaluation of Substituted CBI Analogs of CC-1065 and the Duocarmycins Incorporating the 7-Cyano-1,2,9,9a-tetrahydrocyclopropa[<i>c</i>]benz[<i>e</i>]indol-4-one Alkylation Subunit:  Hammett Quantitation of the Magnitude of Electronic Effects on Functional Reactivity
    作者:Dale L. Boger、Nianhe Han、Christine M. Tarby、Christopher W. Boyce、Hui Cai、Qing Jin、Paul A. Kitos
    DOI:10.1021/jo9605298
    日期:1996.1.1
    The synthesis of 7-cyano-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CCBI), a substituted CBI derivative bearing a C7 cyano group, is described in efforts that establish the magnitude of potential electronic effects on the functional reactivity of the agents. The CCBI alkylation subunit was prepared by a modified Stobbe condensation/Friedel-Crafts acylation for generation of the appropriately functionalized naphthalene precursors followed by 5-exo-trig aryl radical-alkene cyclization for synthesis of the 1,2-dihydro-3H-benz[e]indole skeleton and final Ar-3' alkylation for introduction of the activated cyclopropane. The most concise approach provided the CCBI subunit and its immediate precursor in 14-15 steps in superb overall conversions (15-20%). Resolution of an immediate CCBI precursor and its incorporation into both enantiomers of 34-39, analogs of CC-1065 and the duocarmycins, are detailed. A study of the solvolysis reactivity and regioselectivity of N-BOC-CCBI (25) revealed that introduction of the C7 nitrile slowed the rate of solvolysis but only to a surprisingly small extent. Classical Hammett quantitation of the effect provided a remarkably small rho (-0.3), indicating an exceptionally small C7 substituent electronic effect on functional reactivity. Additional kinetic studies of acid-catalyzed nucleophilic addition proved inconsistent with C4 carbonyl protonation as the slow and rate-determining step but consistent with a mechanism in which protonation is rapid and reversible followed by slow and rate-determining nucleophilic addition to the cyclopropane requiring both the presence and assistance of a nucleophile (S(N)2 mechanism). No doubt this contributes to the DNA alkylation selectivity of this class of agents and suggests that the positioning of an accessible nucleophile (adenine N3) and not C4 carbonyl protonation is the rate-determining step controlling the sequence selectivity of the DNA alkylation reaction, This small electronic effect on the solvolysis rate had no impact on the solvolysis regioselectivity, and stereoelectronically-controlled nucleophilic addition to the least substituted carbon of the activated cyclopropane was observed exclusively. Consistent with past studies, a direct relationship between solvolysis stability and cytotoxic potency was observed with the CCBI-derived agents providing the most potent analogs in the CBI series, and these observations were related to the predictable Hammett substituent effects. For the natural enantiomers, this unusually small electronic effect on functional reactivity had no perceptible effect on their DNA alkylation selectivity. Similar effects of the C7 cyano substituent on the unnatural enantiomers were observed, and they proved to be 4-10x more effective than the corresponding CBI-based unnatural enantiomers and 4-70x less potent than the CCBI natural enantiomers.
查看更多

同类化合物

(Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (R)-(+)-5'-苄氧基卡维地洛 (R)-卡洛芬 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (3Z)-3-(1H-咪唑-5-基亚甲基)-5-甲氧基-1H-吲哚-2-酮 (3Z)-3-[[[4-(二甲基氨基)苯基]亚甲基]-1H-吲哚-2-酮 (3R)-(-)-3-(1-甲基吲哚-3-基)丁酸甲酯 (3-氯-4,5-二氢-1,2-恶唑-5-基)(1,3-二氧代-1,3-二氢-2H-异吲哚-2-基)乙酸 齐多美辛 鸭脚树叶碱 鸭脚木碱,鸡骨常山碱 鲜麦得新糖 高氯酸1,1’-二(十六烷基)-3,3,3’,3’-四甲基吲哚碳菁 马鲁司特 马来酸阿洛司琼 马来酸替加色罗 顺式-ent-他达拉非 顺式-1,3,4,4a,5,9b-六氢-2H-吡啶并[4,3-b]吲哚-2-甲酸乙酯 顺式-(+-)-3,4-二氢-8-氯-4'-甲基-4-(甲基氨基)-螺(苯并(cd)吲哚-5(1H),2'(5'H)-呋喃)-5'-酮 靛红联二甲酚 靛红磺酸钠 靛红磺酸 靛红乙烯硫代缩酮 靛红-7-甲酸甲酯 靛红-5-磺酸钠 靛红-5-磺酸 靛红-5-硫酸钠盐二水 靛红-5-甲酸甲酯 靛红 靛玉红3'-单肟5-磺酸 靛玉红-3'-单肟 靛玉红 青色素3联己酸染料,钾盐 雷马曲班 雷莫司琼杂质13 雷莫司琼杂质12 雷莫司琼杂质 雷替尼卜定 雄甾-1,4-二烯-3,17-二酮 阿霉素的代谢产物盐酸盐 阿贝卡尔 阿西美辛叔丁基酯 阿西美辛 阿莫曲普坦杂质1 阿莫曲普坦 阿莫曲坦二聚体杂质 阿莫曲坦 阿洛司琼杂质