Temporal separation of catalytic activities allows anti-Markovnikov reductive functionalization of terminal alkynes
作者:Le Li、Seth B. Herzon
DOI:10.1038/nchem.1799
日期:2014.1
There is currently great interest in the development of multistep catalytic processes in which one or several catalysts act sequentially to rapidly build complex molecular structures. Many enzymesâoften the inspiration for new synthetic transformationsâare capable of processing a single substrate through a chain of discrete, mechanistically distinct catalytic steps. Here, we describe an approach to emulate the efficiency of these natural reaction cascades within a synthetic catalyst by the temporal separation of catalytic activities. In this approach, a single catalyst exhibits multiple catalytic activities sequentially, allowing for the efficient processing of a substrate through a cascade pathway. Application of this design strategy has led to the development of a method to effect the anti-Markovnikov (linear-selective) reductive functionalization of terminal alkynes. The strategy of temporal separation may facilitate the development of other efficient synthetic reaction cascades. Multifunctional catalysts typically process substrates and intermediates concurrently. Here, a strategy is described to separate catalytic activities in the time domain (temporal separation). Application of this strategy has led to the development of a method to effect the anti-Markovnikov reductive functionalization of terminal alkynes; such an approach may facilitate the development of other synthetic reaction cascades.
目前,发展多步催化过程备受关注,其中一个或多个催化剂按顺序作用,以快速构建复杂分子结构。许多酶——通常是新合成转化的灵感来源——能够通过一系列离散的、机制上不同的催化步骤处理单一底物。在这里,我们描述了一种通过催化活性的时间分离来模拟这些自然反应级联的效率的方法。在这种方法中,单一催化剂按顺序展现多种催化活性,从而允许有效地通过级联路径处理底物。该设计策略的应用促成了一种方法,以实现末端炔烃的反马尔科夫尼科夫(线性选择性)还原官能化。时间分离的策略可能会促进其他高效合成反应级联的发展。多功能催化剂通常同时处理底物和中间体。在这里,描述了一种在时间领域分离催化活性的策略(时间分离)。该策略的应用促成了一种方法,以实现末端炔烃的反马尔科夫尼科夫还原官能化;如此方法可能会促进其他合成反应级联的发展。