摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-fluoro-5-methoxyacridone-4-carboxylic acid | 1300731-95-6

中文名称
——
中文别名
——
英文名称
1-fluoro-5-methoxyacridone-4-carboxylic acid
英文别名
——
1-fluoro-5-methoxyacridone-4-carboxylic acid化学式
CAS
1300731-95-6
化学式
C15H10FNO4
mdl
——
分子量
287.247
InChiKey
PNFKAXYDIDIKMM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.53
  • 重原子数:
    21.0
  • 可旋转键数:
    2.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    79.39
  • 氢给体数:
    2.0
  • 氢受体数:
    3.0

反应信息

  • 作为反应物:
    描述:
    1-fluoro-5-methoxyacridone-4-carboxylic acid4-[2-(3,4-二氢-6,7-二甲氧基-2(1h)-异喹啉)乙基]-苯胺 在 O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate 、 三乙胺 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 2.0h, 以58%的产率得到1-Fluoroelacridar
    参考文献:
    名称:
    Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein
    摘要:
    Aim of this study was to label the potent dual P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) inhibitor elacridar (1) with F-18 to provide a positron emission tomography (PET) radiotracer to visualize Pgp and BCRP. A series of new 1- and 2-halogen- and nitro-substituted derivatives of 1 (4a-e) was synthesized as precursor molecules and reference compounds for radiolabelling and shown to display comparable in vitro potency to 1 in increasing rhodamine 123 accumulation in a cell line overexpressing human Pgp (MDCKII-MDR1). 1-[F-18]fluoroelacridar ([F-18]4b) was synthesized in a decay-corrected radiochemical yield of 1.7 +/- 0.9% by a 1-step no-carrier added nucleophilic aromatic F-18-substitution of 1-nitro precursor 4c. Small-animal PET imaging of [F-18]4b was performed in naive rats, before and after administration of unlabelled 1 (5 mg/kg, n = 3), as well as in wild-type and Mdr1a/b((-/-)) Bcrp1((-/-)) mice (n = 3). In PET experiments in rats, administration of unlabelled 1 increased brain activity uptake by a factor of 9.5 (p = 0.0002, 2-tailed Student's t-test), whereas blood activity levels remained unchanged. In Mdr1a/b((-/-)) Bcrp1((-/-)) mice, the mean brain-to-blood ratio of activity at 60 min after tracer injection was 7.6 times higher as compared to wild-type animals (p = 0.0002). HPLC analysis of rat brain tissue extracts collected at 40 min after injection of [F-18]4b revealed that 93 +/- 7% of total radioactivity in brain was in the form of unchanged [F-18] 4b. In conclusion, the in vivo behavior of [F-18]4b was found to be similar to previously described [C-11]1 suggesting transport of [F-18]4b by Pgp and/or BCRP at the rodent BBB. However, low radiochemical yields and a significant degree of in vivo defluorination will limit the utility of [F-18]4b as a PET tracer. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2011.02.039
  • 作为产物:
    描述:
    2-((2-carboxy-5-fluorophenyl)amino)-3-methoxybenzoic acid三氯氧磷 作用下, 以 乙腈 为溶剂, 反应 3.0h, 以81%的产率得到1-fluoro-5-methoxyacridone-4-carboxylic acid
    参考文献:
    名称:
    Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein
    摘要:
    Aim of this study was to label the potent dual P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) inhibitor elacridar (1) with F-18 to provide a positron emission tomography (PET) radiotracer to visualize Pgp and BCRP. A series of new 1- and 2-halogen- and nitro-substituted derivatives of 1 (4a-e) was synthesized as precursor molecules and reference compounds for radiolabelling and shown to display comparable in vitro potency to 1 in increasing rhodamine 123 accumulation in a cell line overexpressing human Pgp (MDCKII-MDR1). 1-[F-18]fluoroelacridar ([F-18]4b) was synthesized in a decay-corrected radiochemical yield of 1.7 +/- 0.9% by a 1-step no-carrier added nucleophilic aromatic F-18-substitution of 1-nitro precursor 4c. Small-animal PET imaging of [F-18]4b was performed in naive rats, before and after administration of unlabelled 1 (5 mg/kg, n = 3), as well as in wild-type and Mdr1a/b((-/-)) Bcrp1((-/-)) mice (n = 3). In PET experiments in rats, administration of unlabelled 1 increased brain activity uptake by a factor of 9.5 (p = 0.0002, 2-tailed Student's t-test), whereas blood activity levels remained unchanged. In Mdr1a/b((-/-)) Bcrp1((-/-)) mice, the mean brain-to-blood ratio of activity at 60 min after tracer injection was 7.6 times higher as compared to wild-type animals (p = 0.0002). HPLC analysis of rat brain tissue extracts collected at 40 min after injection of [F-18]4b revealed that 93 +/- 7% of total radioactivity in brain was in the form of unchanged [F-18] 4b. In conclusion, the in vivo behavior of [F-18]4b was found to be similar to previously described [C-11]1 suggesting transport of [F-18]4b by Pgp and/or BCRP at the rodent BBB. However, low radiochemical yields and a significant degree of in vivo defluorination will limit the utility of [F-18]4b as a PET tracer. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2011.02.039
点击查看最新优质反应信息