摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

盐酸肼屈嗪 | 304-20-1

中文名称
盐酸肼屈嗪
中文别名
盐酸肼苯哒嗪;1-肼基-2,3-二氮杂萘盐酸盐;1-肼屈嗪盐酸盐;盐酸肼酞嗪;1-肼苯哒嗪盐酸盐
英文名称
hydralazine hydrochloride
英文别名
1'-hydrazinophthalazine hydrochloride;phthalazin-1-yl-hydrazine hydrochloride;1-hydrazinophtalazine hydrochloride;1-hydrazinylphthalazine hydrochloride;Phthalazin-3-ium-1-ylhydrazine;chloride;phthalazin-3-ium-1-ylhydrazine;chloride
盐酸肼屈嗪化学式
CAS
304-20-1
化学式
C8H8N4*ClH
mdl
MFCD01457387
分子量
196.639
InChiKey
ZUXNZUWOTSUBMN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    273°C
  • 沸点:
    322.13°C (rough estimate)
  • 密度:
    1.2961 (rough estimate)
  • 溶解度:
    易溶于水,微溶于乙醇(96%),极微溶于二氯甲烷
  • 颜色/状态:
    Yellow crystals
  • 气味:
    Odorless
  • 稳定性/保质期:
    稳定存放,避免与强氧化剂接触。

计算性质

  • 辛醇/水分配系数(LogP):
    0.75
  • 重原子数:
    13
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    63.8
  • 氢给体数:
    3
  • 氢受体数:
    4

ADMET

代谢
化合物/3-甲基三唑(5,1-b)酞azine/是人类受试者中肼酞嗪的主要代谢物之一。
Compound /3-methyltriazolo(5,1-b)phthalazine/ is one of the major metabolites of hydralazine in human subjects.
来源:Hazardous Substances Data Bank (HSDB)
代谢
肼屈嗪在小肠和/或肝脏中被N-乙酰化。乙酰化速率由遗传决定;大约一半的美国人口快速乙酰化,另一半乙酰化速度较慢。
Hydralazine is N-acetylated in the bowel and/or the liver. The rate of acetylation is genetically determined; about half of the people in the United States acetylate rapidly and half do so slowly.
来源:Hazardous Substances Data Bank (HSDB)
代谢
由于系统清除率超过肝血流量,必须发生肝外代谢。... Hydralazine迅速与循环中的α-酮酸结合形成腙,从血浆中回收的主要代谢物是Hydralazine丙酮酸腙。
Since the systemic clearance exceeds hepatic blood flow, extrahepatic metabolism must occur. ... Hydralazine rapidly combines with circulating alpha-keto acids to form hydrazones, and the major metabolite recovered from the plasma is hydralazine pyruvic acid hydrazone.
来源:Hazardous Substances Data Bank (HSDB)
代谢
... 药代动力学数据表明,肼屈嗪 ... 具有广泛且复杂的代谢过程,这取决于乙酰化酶状态:慢乙酰化者经历初级氧化代谢,而快乙酰化者则发生乙酰化。 ...
... Pharmacokinetic data indicate hydralazine ... has an extensive and complex metabolism depending on acetylator status: slow acetylators undergo primary oxidative metabolism, while rapid acetylators are acetylated. ...
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
识别:肼屈嗪,肼屈嗪盐酸盐是抗高血压药。肼屈嗪是一种白色至类白色的结晶性粉末。它是一种无味或几乎无味的化合物。溶解度如下:溶于水,微溶于乙醇和甲醇;实际上不溶于醚或氯仿。肼屈嗪用于治疗动脉高血压(原发性、恶性、肺性、先兆子痫和子痫)、充血性心力衰竭、慢性阻塞性肺病中的肺动脉高压和主动脉反流。在一些原发性食管运动障碍和银屑病患者中,可能会看到一些益处。最近的观察表明,它可用于在严重充血性心力衰竭中撤除多巴酚丁胺。患有慢性心力衰竭和左至右分流的婴儿可能会在使用肼屈嗪时获得一些益处。人类暴露:主要风险和靶器官:低血压、窦性心动过速、心悸、出汗、潮红和头痛是最常见报告的副作用。严重的低血压可能导致心肌和/或脑缺血。充血性心力衰竭、周围神经病变、感觉异常、肝毒性、药物热、恶心、呕吐和腹泻也是可能的副作用,但最常见与长期使用有关。约15%的每日服用400毫克或更多肼屈嗪的患者可能会出现狼疮样综合征。更高比例的患者会产生循环抗核抗体。每日服用少于200毫克的患者这种综合征较为少见。心血管系统是肼屈嗪的主要受影响器官。神经系统、肝脏、胃肠系统和免疫系统也是靶器官。临床效果总结:中毒的迹象和症状取决于服用的剂量和暴露时间。这些包括严重的低血压、反射性心动过速、心悸、心律失常、晕厥、出汗、脑和/或心肌缺血、头痛和眩晕。恶心、呕吐和腹泻也会观察到。可能出现低钾血症和乳酸酸中毒。每日服用400毫克或更多肼屈嗪的患者中,有10至20%可能会受到狼疮样综合征的影响。这种效应几乎仅在慢乙酰化剂中看到。长期使用可能导致液体潴留、周围神经病变和感觉异常。生物利用度:肼屈嗪的生物利用度变化,从单一口服剂量的50%至90%。根据剂量,血浆峰浓度在口服单一剂量后0.3至1.0小时出现。随着口服剂量的增加,肼屈嗪血浆水平的增加不成比例。代谢途径(肠道、肝脏)的饱和可能负责这种现象。肼屈嗪经历首过代谢,由乙酰化表型决定。因此,不同的生物利用度模式预期:在慢乙酰化剂中比在快乙酰化剂中更高。食物可能会干扰肼屈嗪的生物利用度。已经证明,如果药物在饭后45分钟内服用,血浆水平和曲线下面积生物利用度可减少多达46%。禁忌症:除了系统性红斑狼疮的病史外,如果与肾上腺素能阻断剂联合使用,肼屈嗪使用没有绝对禁忌症。相对禁忌症:在以下情况下应谨慎使用肼屈嗪:主动脉夹层动脉瘤、高输出心力衰竭、肺心病或由瓣膜病导致的机械性梗阻引起的心肌不全。也应谨慎用于有冠状动脉和/或脑血管疾病的患者,因为增加了缺血风险。尽管有乙酰化表型,肾衰竭需要调整剂量。在老年患者中,明智的做法是从较低的剂量(约为成人正常剂量的1/2)开始,然后逐步调整。老年人群中姿势性低血压和其他副作用更为常见。进入途径:口服:口服摄入是最可能的常见中毒途径。注射:通过静脉给药可能会发生中毒。只有当口服途径不可行时,才推荐注射治疗。吸收途径:通过口服途径,肼屈嗪的吸收是可变的,范围从50%至90%。与快乙酰化剂相比,慢乙酰化剂的生物利用度更高。增加剂量,血清水平的增加不成比例,可能是由于肼屈嗪代谢途径的饱和。口服后约60分钟达到血浆峰浓度。最大降压效果在摄入后2至4小时出现,可能持续长达24小时。分布途径:据报道,与血浆蛋白的结合大于87%。肼屈嗪可以在肝脏、肾脏、肺、肾上腺和大动脉中找到高浓度。生物半衰期途径:生物半衰期约为3至4小时,与乙酰化速率无关。然而,其抗高血压效果的半衰期可能长达100小时。在肾衰竭的情况下,效果可能会延长。代谢:肼屈嗪通过乙酰化经历首次通过代谢,这是遗传决定的。胃肠粘膜和肝脏是这种可饱和代谢途径的主要部位。主要代谢物是:MTP;乙酰化产物(3-甲基-1,2,4-三唑-(3,4a)酞嗪);HPH(肼屈嗪
IDENTIFICATION: Hydralazine, hydralazine hydrochloride are antihypertension agents. Hydralazine is a white to off-white crystalline powder. It is odorless to almost odorless compound. Solubilities are: soluble in water, slightly soluble in ethanol and in methanol; practically insoluble in ether or chloroform. Hydralazine is used to treat arterial hypertension (primary; malignant; pulmonary; pre-eclampsia and eclampsia), congestive heart failure, pulmonary hypertension in chronic obstructive pulmonary disease, and aortic regurgitation. Some benefit may be seen if used in primary oesophageal motility disorders and psoriasis. Recent observations indicate that it can be used to withdraw patients from dobutamine in severe congestive heart failure. Infants with chronic heart failure and left-to-right shunts may experience some benefit with hydralazine use. HUMAN EXPOSURE: Main risks and target organs: Hypotension, sinus tachycardia, palpitations, sweating, flushing, and headache are the most commonly reported side effects. Severe hypotension may result in myocardial and/or cerebral ischemia. Congestive heart failure, peripheral neuropathy, paresthesia, hepatotoxicity, drug fever, nausea, vomiting and diarrhea are also possible side effects but are most commonly related to chronic use. A lupus-like syndrome may be seen in 15 per cent of patients taking 400 mg or more of hydralazine daily. A higher percentage of patients develop circulating antinuclear antibodies. This syndrome is less common in patients who receive less than 200 mg per day. The cardiovascular system is mainly affected by hydralazine. The nervous system, the liver, the gastrointestinal and the immunologic systems are also target organs. Summary of clinical effects: Signs and symptoms of poisoning depends on the dose taken and the time of exposure. These include severe hypotension, reflex tachycardia, palpitations, cardiac arrhythmias, syncope, sweating, cerebral and/or myocardial ischemia, headache and dizziness. Nausea, vomiting and diarrhoea are also observed. Hypokalemia and lactic acidosis can occur. Ten to twenty per cent of patients taking 400 mg or more of hydralazine can be affected by a lupus like syndrome. This effect is almost exclusively seen in slow acetylators. Chronic use may also lead to fluid retention, peripheral neuropathy and paresthesia. Bioavailability: Hydralazine bioavailability is variable, ranging from 50 to 90% of a single oral dose. Depending on the dose, peak plasma levels occur from 0.3 to 1.0 hour after a single oral dose. With increasing oral dose, there is a non-proportional increase in the hydralazine plasma levels. A saturation in the metabolic pathways (gut, liver) may be responsible for this phenomenon. Hydralazine undergoes first-pass metabolism which is determined by the acetylator phenotype. Therefore, different bioavailability patterns are expected: it is greater in slow acetylators than in fast acetylators. Food may interfere with hydralazine bioavailability. It has been demonstrated that plasma levels and area under the curve bioavailability is reduced up to 46 % if the drug is administered 45 minutes after a meal. Contraindications: With the exception of a history of systemic lupus erythematosis there are no absolute contraindications to hydralazine use if combined with an adrenergic blocker. Relative Contraindications: Hydralazine should be used cautiously in patients with dissecting aortic aneurysm, heart failure with high output, cor pulmonale or myocardial insufficiency caused by mechanical obstruction due to valvular diseases. It should also be used with caution in patients with coronary and/or cerebrovascular diseases because of increased ischemia. Renal failure requires dose adjustment despite the acetylator phenotype. In geriatric patients it is wise to start with lower doses (about one-half of the adult normal dose), with subsequent titration. Postural hypotension and other side effects are more common in older people. Routes of entry: Oral: Oral ingestion is most likely the most common route of poisoning. Parenteral: Poisoning may occur by intravenous administration. Parenteral therapy is recommended only when the oral route is not feasible. Absorption by route of exposure: By the oral route, hydralazine absorption is variable and ranges from 50 to 90 %. Bioavailability is greater in slow compared to fast acetylators. Increasing the dose, there is a non-proportional increase in the serum levels, possibly because of saturation in the metabolic pathways of hydralazine. Peak plasma levels are achieved in about 60 minutes after ingestion. The maximum hypotensive effect occurs from 2 to 4 hours after ingestion and may persist for up to 24 hours. Distribution by route of exposure: Binding to plasma proteins is reported to be greater than 87 %. Hydralazine can be found in high concentrations in liver, kidneys, lungs, adrenals and arteries. Biological half-life by route of exposure: Biological half-life is about 3 to 4 hours and is not related to the rate of acetylation. However, the half-life of its antihypertensive effect may last up to 100 hours. The effects may be prolonged with renal failure. Metabolism: Hydralazine undergoes first pass metabolism by acetylation which is genetically determined. The gastro-intestinal mucosa and the liver are the main sites of this saturable metabolic pathway. The major metabolites are: MTP; the acetylation product (3-methyl-1,2,4-triazolo-(3,4a)phtalazine); HPH hydralazine pyruvic acid hydrazone), which is the major plasma metabolite; N-AcHPZ (4-(2-acetylhydrazino) phthalazin-1-one, which is mostly found in the urine and 3-OHMTP (3-hydroxymethyl-1,2,4-triazolo(3,4a) phtalazine. Systemic metabolism is dependent on hydroxylation followed by conjugation with glucuronic acid in the liver, which is not dependent on the rate of acetylation. Therefore, the half-life does not differ very much between slow and fast acetylators. Biotransformation of xenobiotics containing an aromatic amine or a hydrazine group by N-acetylation is dependent on the N-acetyltransferases enzymes which in humans are expressed by only two different enzymes, known as NAT1 and NAT2. Genetic polymorphism determines a reduction in the activity/stability of the NAT2 enzyme which is observed in slow acetylators. Elimination by route of exposure: About 65% of the total dose is excreted in the urine in 24 hours. Slow acetylators eliminate 15 to 20% as N-AcHPZ and 10% as conjugated 3-OHMTP. In fast acetylators, 30% is excreted in the urine as N-AcHPZ, as well as 10 to 30% as conjugated 3-OHMTP. The fecal contend of hydralazine is about 10% of the dose. Mode of action: Toxicodynamics: Hydralazine is a potent arteriolar vasodilator by producing relaxation of vascular smooth muscle. The vasodilation is most marked in the splanchnic, coronary, cerebral and renal arterial beds. Some of the symptoms may be caused by vasodilation and histaminic effects. Iron chelation may lead to anemia. A hydralazine-DNA pyrimidine interaction resulting in immune responses to hydralazine and nuclear antigens in which antibodies to native DNA occur can explain the hydralazine-induced lupus erythematosis. Recent observations have demonstrated that in the presence of metal ions or peroxidase hydrogen peroxide, hydralazine increased free radical production and site specific DNA-damage. It was suggested that this could be a possible explanation for hydralazine induced lupus, mutation and cancer. Slow acetylators produce hydralazine degradation to phthalazine through the intermediate of nitrogen-centered free radical and carbon centered free-radicals. In human red blood cells, hydralazine increases hydrogen peroxide production and proteolysis has been noted. As far as the hydralazine-induced lupus syndrome is concerned, since it is a rheumatic and febrile disease, and as a collagen simulating disease, it has become evident that this syndrome is indistinguishable from that of systemic lupus erythematous. Since then, it has been confirmed by several observations that anti-nuclear antibodies are almost always seen in the patients affected with the disease. These antibodies may persists for up to nine years after hydralazine exposure. A relationship between the phenotype acetylator activity to the antinuclear antibodies production and toxic symptoms in hypertensive patients was demonstrated. Slow acetylator Caucasian people are at higher risk. Pharmacodynamics: The mechanism of action of the vasodilation induced by hydralazine is not yet well understood. Recent observations suggest that it inhibits calcium release of the vascular smooth muscle sarcoplasmic reticulum by blocking the inositol trisphosphate (IP3)-induced calcium release, therefore reducing calcium turnover inside the cell. The resultant vasodilation reduces cardiac afterload, increasing cardiac function in patients with heart failure. However, some evidence exists concerning a direct action in the myocardium by an increase in calcium influx through the sarcolemma. This may be partially due to the stimulation of the beta-adrenoreceptors. However, a study describing a large number of patients found no evidence that hydralazine alters the risk of gut and lung cancer. Hydralazine readily crosses the placental blood-barrier but has no effect on the placental circulation. It has minimal effects on isolated human umbilical vessels. Human data have demonstrated that there is no increased risk of congenital malformations in the offspring of women treated with hydralazine, even during the first trimester of pregnancy. Some cases of hydralazine-induced neonatal thrombocytopenia with increased risk of bleeding were reported to the Swedish. Interactions: Indomethacin may produce a clinically important decrease in the hypotensive effects of hydralazine, however, such effects have been demonstrated only in healthy volunteers. Some pharmacokinetic interactions have been described with the concomitant administration of hydralazine and beta-blockers. Increased bioavailability of propranolol, and of metoprolol were observed in these circumstances. This interaction was not seen with a sustained release preparation of propranolol. Pyridoxine can reverse the neuropathy produced by hydralazine. Severe hypotensive sequelae of combined diazoxide and hydralazine therapy was observed in some patients. Beta-blockers can reduce the side effects produced by sympathetic stimulation when hydralazine is clinically used to treat hypertension. However, when used in pregnancy associated with propranolol, some negative effects on fetal development may occur. These effects are not seen with the combination of pindolol and hydralazine. Combined with propranolol, there may be a reduction in the activity of lipoprotein lipase activity, and alteration of the lipid profile. Organic nitrates when associated with hydralazine may have beneficial effects in patients with long-standing mitral regurgitation. In patients with heart failure, the combination of hydralazine and dinitrate isosorbide has a better survival rate compared to placebo. Main adverse effects: Hypotension, syncope, headache, myocardial and/or cerebral ischemia, flushing, nasal congestion, angina pectoris, fluid retention, edema of the lower extremities, palpitations, tachycardia, nausea and vomiting. Myocardial infarction and sudden death can occur. Antinuclear antibodies and lupus-like syndrome may occur. ANIMAL/PLANT STUDIES: Combined with prenalterol, hydralazine exhibits a cardiotoxic effect by enhancing myocardial necrosis in rats. This effect could not be reproduced in rabbits. Carcinogenicity: Hydralazine has been associated with the appearance of lung carcinogenesis in mice. In mice and rabbits, hydralazine can produce skeletal malformations due to its effect on the collagen synthesis. When given to pregnant rats in doses non-toxic to the mother, hydralazine does not have teratogenic or fetotoxic effects. Mutagenicity: Hydralazine can induce structural and/or conformational changes in DNA. It has a clastogenic effect in the liver which can be the main target site of genotoxicity.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
人类致癌性证据不足。动物致癌性证据有限。总体评估:第3组:该物质对人类致癌性不可分类。
Inadequate evidence of carcinogenicity in humans. Limited evidence of carcinogenicity in animals. OVERALL EVALUATION: Group 3: The agent is not classifiable as to its carcinogenicity to humans.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 在妊娠和哺乳期间的影响
◉ 母乳喂养期间使用总结:有限的母乳水平和婴儿血清水平数据,以及长期用于产后母亲的历史表明,肼屈嗪是哺乳母亲可接受的抗高血压药物,即使是哺乳新生儿。 ◉ 对哺乳婴儿的影响:在一项持续8周的哺乳婴儿研究中未报告不良影响。 ◉ 对泌乳和母乳的影响:截至修订日期,未找到相关的已发布信息。
◉ Summary of Use during Lactation:Limited milk level and infant serum level data and a long history of use in postpartum mothers indicate that hydralazine is an acceptable antihypertensive in nursing mothers, even those nursing newborns. ◉ Effects in Breastfed Infants:No adverse effects reported in one infant breastfed for 8 weeks. ◉ Effects on Lactation and Breastmilk:Relevant published information was not found as of the revision date.
来源:Drugs and Lactation Database (LactMed)
毒理性
  • 相互作用
可能存在尼亚拉米德延长和加强肼屈嗪的抗高血压作用,通过抑制其代谢以及通过干扰肾上腺素能功能传递的附加效应。
...The possibility exists that nialamide may prolong and intensify the antihypertensive action of hydralazine by inhibiting its metabolism and by an additive effect of interfering with adrenergic functional transmission.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
一名患者在接受了双侧交感神经切除术以治疗系统性高血压后,每天多次接受肼苯哒嗪和六甲溴铵的治疗,结果与这些药物的使用明确相关地发展出了超过一个屈光度的近视。
One patient receiving both hydralazine and hexamethonium several times a day after bilateral sympathectomy for systemic hypertension developed a myopia of more than one diopter in definite association with the use of these drugs.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
肼屈嗪通过胃肠道吸收良好,但系统性生物利用度较低(快乙酰化者为16%,慢乙酰化者为35%)。
Hydralazine is well absorbed through the GI tract, but the systemic bioavailability is low (16% in fast acetylators and 35% in slow acetylators).
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
氢妥拉唑在血浆中的峰浓度和药物的峰降压作用在摄入后30至120分钟内发生。尽管它在血浆中的半衰期大约是一个小时,但氢妥拉唑的降压作用持续时间可长达12小时。这种差异尚无明确解释。
The peak concentration of hydralazine in plasma and the peak hypotensive effect of the drug occur within 30 to 120 minutes of ingestion. Although its half-life in plasma is about an hour, the duration of the hypotensive effect of hydralazine can last as long as 12 hours. There is no clear explanation for this discrepancy.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 危险等级:
    6.1
  • 危险品标志:
    Xn
  • 安全说明:
    S26,S36/37/39,S45
  • 危险类别码:
    R22,R36/37/38
  • WGK Germany:
    3
  • 海关编码:
    2942000000
  • 危险品运输编号:
    UN 2811 6.1/PG 3
  • 危险类别:
    6.1
  • RTECS号:
    TH9000000
  • 包装等级:
    III
  • 危险标志:
    GHS06
  • 危险性描述:
    H301,H315,H319,H335
  • 危险性防范说明:
    P261,P301 + P310,P305 + P351 + P338
  • 储存条件:
    -20°C 冰箱

SDS

SDS:6e66e8a1e48ab92d3116f3b477ae0080
查看

模块 1. 化学品
1.1 产品标识符
: Hydralazine hydrochloride
产品名称
1.2 鉴别的其他方法
1-Hydrazinophthalazinehydrochloride
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅用于研发。不作为药品、家庭或其它用途。

模块 2. 危险性概述
2.1 GHS-分类
急性毒性, 经口 (类别 3)
皮肤刺激 (类别 2)
眼睛刺激 (类别 2A)
特异性靶器官系统毒性(一次接触) (类别 3)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 危险
危险申明
H301 吞咽会中毒
H315 造成皮肤刺激。
H319 造成严重眼刺激。
H335 可能引起呼吸道刺激。
警告申明
预防措施
P261 避免吸入粉尘/烟/气体/烟雾/蒸气/喷雾.
P264 操作后彻底清洁皮肤。
P270 使用本产品时不要进食、饮水或吸烟。
P271 只能在室外或通风良好之处使用。
P280 穿戴防护手套/ 眼保护罩/ 面部保护罩。
事故响应
P301 + P310 如果吞下去了: 立即呼救解毒中心或医生。
P302 + P352 如果皮肤接触:用大量肥皂和水清洗。
P304 + P340 如吸入: 将患者移到新鲜空气处休息,并保持呼吸舒畅的姿势。
P305 + P351 + P338 如与眼睛接触,用水缓慢温和地冲洗几分钟。如戴隐形眼镜并可方便地取
出,取出隐形眼镜,然后继续冲洗.
P312 如感觉不适,呼救中毒控制中心或医生.
P321 具体处置(见本标签上提供的急救指导)。
P330 漱口。
P332 + P313 如觉皮肤刺激:求医/就诊。
P337 + P313 如仍觉眼睛刺激:求医/就诊。
P362 脱掉沾污的衣服,清洗后方可再用。
安全储存
P403 + P233 存放于通风良的地方。 保持容器密闭。
P405 存放处须加锁。
废弃处置
P501 将内容物/ 容器处理到得到批准的废物处理厂。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.1 物 质
: 1-Hydrazinophthalazinehydrochloride
别名
: C8H8N4 · HCl
分子式
: 196.64 g/mol
分子量
组分 浓度或浓度范围
Hydralazine hydrochloride
<=100%
化学文摘登记号(CAS 304-20-1
No.) 206-151-0
EC-编号

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 向到现场的医生出示此安全技术说明书。
吸入
如果吸入,请将患者移到新鲜空气处。 如呼吸停止,进行人工呼吸。 请教医生。
皮肤接触
用肥皂和大量的水冲洗。 立即将患者送往医院。 请教医生。
眼睛接触
用大量水彻底冲洗至少15分钟并请教医生。
食入
切勿给失去知觉者通过口喂任何东西。 用水漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
皮疹, 发烧, 头痛, 心悸, 食欲不振
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,抗乙醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物, 氮氧化物, 氯化氢气体
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 作业人员防护措施、防护装备和应急处置程序
戴呼吸罩。 避免粉尘生成。 避免吸入蒸气、烟雾或气体。 保证充分的通风。 人员疏散到安全区域。
避免吸入粉尘。
6.2 环境保护措施
如能确保安全,可采取措施防止进一步的泄漏或溢出。 不要让产品进入下水道。
6.3 泄漏化学品的收容、清除方法及所使用的处置材料
收集和处置时不要产生粉尘。 扫掉和铲掉。 放入合适的封闭的容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 避免形成粉尘和气溶胶。
在有粉尘生成的地方,提供合适的排风设备。一般性的防火保护措施。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 使容器保持密闭,储存在干燥通风处。
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
没有已知的国家规定的暴露极限。
8.2 暴露控制
适当的技术控制
避免与皮肤、眼睛和衣服接触。 休息前和操作本品后立即洗手。
个体防护设备
眼/面保护
面罩與安全眼鏡请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟) 检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
完全接触
物料: 丁腈橡胶
最小的层厚度 0.11 mm
溶剂渗透时间: 480 min
测试过的物质Dermatril® (KCL 740 / Z677272, 规格 M)
飞溅保护
物料: 丁腈橡胶
最小的层厚度 0.11 mm
溶剂渗透时间: 480 min
测试过的物质Dermatril® (KCL 740 / Z677272, 规格 M)
, 测试方法 EN374
如果以溶剂形式应用或与其它物质混合应用,或在不同于EN
374规定的条件下应用,请与EC批准的手套的供应商联系。
这个推荐只是建议性的,并且务必让熟悉我们客户计划使用的特定情况的工业卫生学专家评估确认才可.
这不应该解释为在提供对任何特定使用情况方法的批准.
身体保护
全套防化学试剂工作服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和数量来选择。
呼吸系统防护
如危险性评测显示需要使用空气净化的防毒面具,请使用全面罩式多功能微粒防毒面具N99型(US)
或P2型(EN
143)防毒面具筒作为工程控制的候补。如果防毒面具是保护的唯一方式,则使用全面罩式送风防毒
面具。 呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 固体
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
熔点/凝固点: 273 °C
f) 沸点、初沸点和沸程
无数据资料
g) 闪点
无数据资料
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸气压
无数据资料
l) 蒸汽密度
无数据资料
m) 密度/相对密度
无数据资料
n) 水溶性
无数据资料
o) n-辛醇/水分配系数
无数据资料
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应
无数据资料
10.4 应避免的条件
无数据资料
10.5 不相容的物质
强氧化剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
半数致死剂量 (LD50) 经口 - 大鼠 - 280 mg/kg
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
无数据资料
生殖细胞致突变性
无数据资料
致癌性
该产品是或包含被IARC, ACGIH, EPA, 和 NTP 列为可能不是致癌物的组分
IARC:
3 - Group 3: Not classifiable as to its carcinogenicity to humans (Hydralazine hydrochloride)
生殖毒性
实验室试验表明有畸胎生成效应
特异性靶器官系统毒性(一次接触)
吸入 - 可能引起呼吸道刺激。
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入可能有害。 引起呼吸道刺激。
摄入 误吞会中毒。
皮肤 通过皮肤吸收可能有害。 造成皮肤刺激。
眼睛 造成严重眼刺激。
接触后的征兆和症状
皮疹, 发烧, 头痛, 心悸, 食欲不振
附加说明
化学物质毒性作用登记: TH9000000

模块 12. 生态学资料
12.1 生态毒性
无数据资料
12.2 持久性和降解性
无数据资料
12.3 潜在的生物累积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不良影响
无数据资料

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和不可回收的溶液交给有许可证的公司处理。
联系专业的拥有废弃物处理执照的机构来处理此物质。
与易燃溶剂相溶或者相混合,在备有燃烧后处理和洗刷作用的化学焚化炉中燃烧
受污染的容器和包装
按未用产品处置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: 2811 国际海运危规: 2811 国际空运危规: 2811
14.2 联合国运输名称
欧洲陆运危规: TOXIC SOLID, ORGANIC, N.O.S. (Hydralazine hydrochloride)
国际海运危规: TOXIC SOLID, ORGANIC, N.O.S. (Hydralazine hydrochloride)
国际空运危规: Toxic solid, organic, n.o.s. (Hydralazine hydrochloride)
14.3 运输危险类别
欧洲陆运危规: 6.1 国际海运危规: 6.1 国际空运危规: 6.1
14.4 包裹组
欧洲陆运危规: III 国际海运危规: III 国际空运危规: III
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 国际空运危规: 否
海洋污染物(是/否): 否
14.6 对使用者的特别提醒
无数据资料


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A


制备方法与用途

盐酸肼屈嗪

盐酸肼屈嗪又称盐酸肼酞嗪,是已知的化合物。其化学名称为1(2H)-2、3-二氮杂萘酮腙(Hydralazine),主要作用于松驰血管,常用于中度高血压的治疗,并通常与β-受体阻滞剂和利尿剂联合使用。

药理作用 降压

盐酸肼屈嗪是一种直接作用于动脉和小动脉平滑肌的抗高血压药。通过舒张血管平滑肌降低外周阻力,从而达到降低血压的目的。它具有中等强度的降血压作用,显著降低舒张压,并能增加肾血流量。

心力衰竭

盐酸肼屈嗪可增加心排出量,同时降低血管阻力和后负荷,有助于改善心脏功能。

药物相互作用
  1. 与非甾体类抗炎止痛药同用时,降压效果会减弱。
  2. 拟交感胺类药物会抵消盐酸肼屈嗪的降压作用。
  3. 与其他降压药或二氮嗪合用时,降压效果增强。
制备

一种工业化生产盐酸肼屈嗪的方法如下:

  1. 盐酸肼的生产:将50%水合肼与乙醇混合液滴加入氯化氢乙醇中,控制温度在-10°C至-15°C之间,生成盐酸肼乙醇溶液。最终pH值调节至2~4。

  2. 盐酸肼屈嗪的生产:在上述盐酸肼乙醇溶液中分批加入邻氰基苯甲醛,缓慢升温并将反应温度控制在45℃~50℃之间,持续24~48小时。反应结束后,用CP级盐酸调整pH值至1~2,降温后析晶、甩滤、洗涤干燥。

  3. 精制:将粗品按1∶1(M∶V)的比例投入乙醇溶液中升温溶解,加入适量活性炭脱色,压滤后降温析晶,甩滤并烘干。此过程的生产路线如下:

    (此处插入图片)

生物活性

Hydralazine HCl 是Hydralazine (Apresoline) 的盐酸盐形式,是直接有效的平滑肌松弛剂,IC50值为1.9 mM。

靶点
  • 钾通道
体外研究

盐酸肼屈嗪对RAG-2基因的表达上调具有损害作用,并减少二次免疫球蛋白基因重排。它还能破坏B淋巴细胞自我容忍并通过受体编辑产生致病性自身反应性。

氧化应激
  • 盐酸肼屈嗪能直接清除acrolein,降低细胞内acrolein活性,从而抑制大分子内的收聚。
  • 在处理30分钟后,盐酸肼屈嗪能够抑制交联,但在90分钟后作用无效。
  • 通过ROS清除机制影响黄嘌呤氧化酶和烟酰胺腺嘌呤二核苷酸/烟酰胺腺嘌呤二核苷酸磷酸氧化酶的超氧自由基产生。
  • 盐酸肼屈嗪能显著减少NO(*)生成,并且这种效应导致NOS-2基因表达和蛋白合成降低。同时,它也有效地阻止COX-2的基因表达以及PGE(2)的合成。
神经保护

在豚鼠脊髓体外实验中,盐酸肼屈嗪不仅能保护acrolein介导的损伤,还能显著减轻acrolein诱导的超氧化物产生、谷胱甘肽耗尽及线粒体功能障碍,并降低复合动作电位传导。

体内研究

在小鼠实验中,盐酸肼屈嗪剂量依赖性地保护血浆标记酶增加,但未完全阻止allyl醇引发的肝谷胱甘肽耗竭。

应用
  • 抗高血压药:主要用于治疗中度高血压。

反应信息

  • 作为反应物:
    描述:
    盐酸肼屈嗪 在 palladium on activated charcoal sodium acetate 作用下, 以 甲醇 为溶剂, 反应 19.17h, 生成 3-(D-xylo-tetritol-1-yl)-1,2,4-triazolo<3,4-a>phthalazine
    参考文献:
    名称:
    3-(醛糖醇-1-基)-1,2,4-三唑并[3,4-a]酞嗪的合成
    摘要:
    摘要1-肼基酞嗪(肼苯并肼)与d-糖,d-核糖,d-木糖,d-甘露糖和l-鼠李糖的缩合得到相应的醛糖-邻苯二甲酸酞嗪-1-基hydr唑酮。另一方面,d-阿拉伯糖和d-半乳糖通过hydr的自脱氢环化反应得到了相应的3-(醛醇-1-基)-1,2,4-三唑并[3,4-a]酞嗪。讨论了这种差异的基本原理。后者的乙酰化得到聚-O-乙酰基衍生物。木炭上的钯催化或脱氢环化或乙酰化,可将nes转化为三唑并萘二甲酸酯或它们的乙酸酯。讨论了合成化合物的质谱。
    DOI:
    10.1016/s0008-6215(00)85294-5
  • 作为产物:
    描述:
    2-formylphenyl tosylate 在 palladium(II) trifluoroacetate 、 肼基甲酸叔丁酯1,3-双(二苯基膦)丙烷 、 magnesium sulfate 、 potassium carbonate三氯氧磷 作用下, 以 乙腈 为溶剂, 60.0~140.0 ℃ 、1.0 MPa 条件下, 反应 23.5h, 生成 盐酸肼屈嗪
    参考文献:
    名称:
    通过钯催化的2-甲酰基芳基甲苯磺酸盐,肼和CO的三组分环氨基羰基化反应获得邻苯二氮酮
    摘要:
    已经建立了用肼和一氧化碳进行钯催化的2-甲酰基芳基甲苯磺酸酯的三组分环氨基羰基化反应,这为合成取代的邻苯二氮酮提供了一种有效的方法。此外,通过将该方案用作关键步骤,可以轻松以65%的产率合成肼屈嗪。
    DOI:
    10.1016/j.tet.2016.10.065
  • 作为试剂:
    描述:
    1-(5-methyl-3-oxo-2-phenyl-1H-pyrazol-4-yl)butane-1,3-dione盐酸肼屈嗪 作用下, 以 乙醇 为溶剂, 反应 4.0h, 生成 3-甲基-1,2,4-噻唑并[3,4-a]二氮杂萘 、 4-acetyl-5-methyl-2-phenyl-1H-pyrazol-3-one
    参考文献:
    名称:
    A Convenient Synthesis of 4-Acetyl-5-hydroxy-3-methyl-1-substituted Pyrazoles
    摘要:
    Reaction of 1-(5-hydroxy-3-methyl-1-substituted-4-pyrazolyl)-1, 3-butanediones (1a-d) with 1-hydrazinophthalazine hydrochloride leads to the formation of 4-acetyl-5-hydroxy-3-ethyl-1-substitutedpyrazoles (3a-d) along with 3-methyl-s-triazolo[3,4-a] phthalazine (4) in good yields.
    DOI:
    10.1080/00397919408010577
点击查看最新优质反应信息

文献信息

  • Pharmaceutical preparation containing copolyvidone
    申请人:Takeda Pharmaceutical Company Limited
    公开号:US10098866B2
    公开(公告)日:2018-10-16
    A stabilized preparation which comprises: a unstable drug in a polyethylene glycol-containing preparation; and a coating agent comprising a copolyvidone instead of polyethylene glycol with which the drug is coated.
    一种稳定的制剂,包括:在聚乙二醇含制剂中的不稳定药物;以及一种包衣剂,其包衣剂包括一种共聚维酮,而不是用聚乙二醇包衣药物。
  • Sulfonyl-containing 2,3-diarylindole compounds, methods for making same, and methods of use thereof
    申请人:——
    公开号:US20040058977A1
    公开(公告)日:2004-03-25
    The present invention relates to sulfonyl-containing 2,3-diarylindole, especially to new compounds of general Formula, to a preparation method for their preparation, to pharmaceutical compositions containing said compound, and to the medical use thereof in the treatment of diseases relating to the inhibition of cyclooxygenase-2 (COX-2).
    本发明涉及含砜基的2,3-二芳基吲哚,特别涉及一般式的新化合物,其制备方法,含有该化合物的药物组合物,以及在治疗与环氧合酶-2(COX-2)抑制有关的疾病中的医疗用途。
  • BICYCLIC COMPOUNDS AND USE AS ANTIDIABETICS
    申请人:Fang Jing
    公开号:US20100029650A1
    公开(公告)日:2010-02-04
    The present invention relates to novel compounds that are useful in the treatment of metabolic disorders, particularly type II diabetes mellitus and related disorders, and also to the methods for the making and use of such compounds.
    本发明涉及一种新型化合物,该化合物在治疗代谢性疾病,特别是Ⅱ型糖尿病及相关疾病方面具有用途,并且还涉及制备和使用这种化合物的方法。
  • [EN] FUMAGILLOL COMPOUNDS AND METHODS OF MAKING AND USING SAME<br/>[FR] COMPOSÉS DE FUMAGILLOL, ET LEURS PROCÉDÉS DE FABRICATION ET D'UTILISATION
    申请人:ZAFGEN INC
    公开号:WO2018031877A1
    公开(公告)日:2018-02-15
    Disclosed herein, in part, are fumagillol compounds and methods of use in treating medical disorders, such as obesity. Pharmaceutical compositions and methods of making fumagillol compounds are provided. The compounds are contemplated to have activity against methionyl aminopeptidase 2.
    本文披露了富马醇类化合物及其在治疗医学疾病(如肥胖症)中的用途方法。提供了富马醇类化合物的药物组合物和制备方法。这些化合物被认为对蛋氨酸氨肽酶2具有活性。
  • HETEROCYCLIC COMPOUND
    申请人:Takeda Pharmaceutical Company Limited
    公开号:US20170015655A1
    公开(公告)日:2017-01-19
    The present invention provide a heterocyclic compound having a HDAC inhibitory action, and useful for the treatment of autoimmune diseases and/or inflammatory diseases, graft versus host disease, cancers, central nervous diseases including neurodegenerative diseases, Charcot-Marie-Tooth disease and the like, and a pharmaceutical composition comprising the compound. The present invention relates to a compound represented by the formula (I): wherein each symbol is as defined in the specification, or a salt thereof.
    本发明提供一种具有HDAC抑制作用的杂环化合物,用于治疗自身免疫疾病和/或炎症性疾病、移植物抗宿主病、癌症、包括神经退行性疾病、沙科-玛丽-图特病等在内的中枢神经疾病,以及包含该化合物的药物组合物。本发明涉及一种由下式(I)表示的化合物: 其中每个符号如规范中定义,或其盐。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
查看更多图谱数据,请前往“摩熵化学”平台
ir
raman
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台