2-氯喹啉基-3-甲醛的BH乙酸的无碱胺化:合成N-取代-1,2-二氢苯并[ b ] [1,8]萘啶的简便方法
摘要:
从2-氯-3-甲酰基喹啉的BH乙酸酯和活化的烯烃,然后用不同的胺进行乙酰化,可以有效地无锅一锅法合成1,2-二氢苯并[ b ] [1,8]萘啶。这些反应可在很短的时间内完成,并以良好的收率提供了良好的产品。我们进一步探索了具有碳亲核试剂的BH乙酸酯的范围,为在温和条件下以优异的收率合成a啶衍生物提供了一条新途径。
Active methylene compounds (AMCs) controlled facile synthesis of acridine and phenanthridine from morita Baylis–Hillman acetate
作者:Tanu Gupta、Jay Bahadur Singh、Kalpana Mishra、Radhey M. Singh
DOI:10.1039/c7ra09447g
日期:——
We carried out simple and facile syntheses of acridines and phenanthridines from MBH acetates of 2-chloro-quinoline-3-carbaldehydes with active methylene compounds (AMCs). Formation of products was found to be dependent on the functional group of the AMC. For example, ethylcyanoacetate and malononitrile favoured the formation of acridines and cyanoacetamide, and ethyl nitroacetate and malonic esters
我们从2-氯喹啉-3-甲醛与活性亚甲基化合物(AMCs)的MBH乙酸酯进行了简单,简便的of啶和菲啶的合成。发现产物的形成取决于AMC的官能团。例如,氰基乙酸乙酯和丙二腈有利于形成cr啶和氰基乙酰胺,而硝基乙酸乙酯和丙二酸酯则有利于形成有角度融合的菲啶。导致菲啶形成的反应通过S N 2'中间体的单键旋转进行,这归因于AMCs官能团和喹啉氮之间的电子/空间排斥。
Palladium-Catalyzed Reaction of MBH Acetates and Terminal Alkynes: Cascade Synthesis of Phenanthridine and 6-Arylethynylphenanthridine
作者:Tanu Gupta、Jay Bahadur Singh、Rashmi Singh、Radhey M. Singh
DOI:10.1002/ejoc.201800725
日期:2018.8.23
A palladium‐catalyzed cascadereaction of Morita–Baylis–Hillman (MBH) acetates and terminal alkynes was developed. This regioselective synthetic approach is temperature controlled and favors the formation of phenanthridines when conducted at a lower temperature and 6‐arylethynylphenanthridines when performed at a higher temperature.
Cascade S<sub>N</sub>2′-S<sub>N</sub>Ar, Elimination, and 1,5-Hydride Shift Reactions by Acetylacetone/Acetoacetic Esters: Synthesis of 9,10-Dihydroacridines
作者:Tanu Gupta、Kishor Chandra Bharadwaj、Radhey M. Singh
DOI:10.1002/ejoc.201600911
日期:2016.10
A reaction involving the use of acetylacetone/methyl acetoacetate and Morita–Baylis–Hillmanacetates for the efficient, one-pot, metal-free synthesis of 9,10-dihydroacridines at room temperature was developed. The cascade of reactions involved sequential SN2′–SNAr reactions, elimination, and reduction through ketene generation and hydride transfer. Evidence for hydride shift via a ketene intermediate