Ru/P-Containing Porous Biochar-Efficiently Catalyzed Cascade Conversion of Cellulose to Sorbitol in Water under Medium-Pressure H<sub>2</sub> Atmosphere
作者:Feng Mao、Shuainan Chen、Qiao Zhang、Long Yang、Feifei Wan、Dabo Jiang、Manman Xiong、Chao Zhang、Yachun Liu、Zaihui Fu
DOI:10.1246/bcsj.20200095
日期:2020.8.15
This paper discloses a simple and productive strategy for the preparation of biochar-based bifunctional catalysts. In this strategy, very cheap bamboo powder is thermally carbonized to yield P-containing porous biochars (PBCs) by the activation of concentrated phosphoric acid (H3PO4), and the latter can be transformed into the target catalysts via loading Ru nanometer particles (NPs) on them (marked as Ru/PBCs). A series of characterizations and measurements support that PBCs have stable and rich micro-meso pores and small strong acidic protons (0.10–0.28 mmol·g−1) attributable to the grafted and/or skeleton phosphorus groups, as well as a strong affinity to β-1,4-glycosidic bonds, thus exhibiting a good acid catalytic activity for the hydrolysis of cellulose to glucose. More importantly, they are excellent acidic supports for the loading of Ru NPs owing to high BET surface area, which can give the loaded Ru NPs uniform and narrow distribution (1–6 nm). The resulting bifunctional Ru/PBCs catalysts possess excellent hydrolytic hydrogenating activity for the one-pot cascade conversion of cellulose and the optimized conditions can achieve ca. 89% hexitol yield with 98% sorbitol selectivity under relatively mild conditions. This work provides a good example for the preparation of biomass-derived bifunctional catalysts and their applications in biorefinery.
本文披露了一种简单而高效的制备生物炭基双功能催化剂的策略。在该策略中,廉价的竹粉经过热碳化,利用浓磷酸(H3PO4)的活化生成含磷的多孔生物炭(PBCs),随后可以通过在其上负载钌纳米颗粒(NPs)将其转化为目标催化剂(标记为Ru/PBCs)。一系列表征和测量表明,PBCs具有稳定且丰富的微孔和中孔,以及由接枝和/或骨架磷基团引起的小而强酸性质子(0.10–0.28 mmol·g−1),同时对β-1,4-糖苷键具有强亲和力,因此展现出良好的酸催化活性,能够将纤维素水解为葡萄糖。更重要的是,由于高比表面积,它们是负载钌纳米颗粒的优良酸性载体,能够使负载的钌纳米颗粒均匀且窄的分布(1–6 nm)。所得到的双功能Ru/PBCs催化剂在纤维素的一锅级联转化过程中表现出优异的水解氢化活性,在相对温和的条件下,优化条件下可实现约89%的六醇产率和98%的山梨醇选择性。这项工作为制备生物质来源的双功能催化剂及其在生物炼制中的应用提供了良好的示范。