摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 214492-82-7

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
214492-82-7
化学式
C18H24N2O2Si2
mdl
——
分子量
356.572
InChiKey
XITJCWTXXJCZDC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.21
  • 重原子数:
    24.0
  • 可旋转键数:
    4.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    44.24
  • 氢给体数:
    0.0
  • 氢受体数:
    4.0

反应信息

  • 作为反应物:
    参考文献:
    名称:
    The i-Motif in the bcl-2 P1 Promoter Forms an Unexpectedly Stable Structure with a Unique 8:5:7 Loop Folding Pattern
    摘要:
    Transcriptional regulation of the bcl-2 proto-oncogene is highly complex, with the majority of transcription driven by the P1 promoter site and the interaction of multiple regulatory proteins. A guanine- and cytosine-rich (GC-rich) region directly upstream of the P1 site has been shown to be integral to bcl-2 promoter activity, as deletion or mutation of this region significantly increases transcription. This GC-rich element consists of six contiguous runs of guanines and cytosines that have the potential to adopt DNA secondary structures, the G-quadruplex and i-motif, respectively. Our laboratory has previously demonstrated that the polypurine-rich strand of the bcl-2 promoter can form a mixture of three different G-quadruplex structures. In this current study, we demonstrate that the complementary polypyrimidine-rich strand is capable of forming one major intramolecular i-motif DNA secondary structure with a transition pH of 6.6. Characterization of the i-motif folding pattern using mutational studies coupled with circular dichroic spectra and thermal stability analyses revealed an 8:57 loop conformation as the predominant structure at pH 6.1. The folding pattern was further supported by chemical footprinting with bromine. In addition, a novel assay involving the sequential incorporation of a fluorescent thymine analog at each thymine position provided evidence of a capping structure within the top loop region of the i-motif. The potential of the GC-rich element within the bcl-2 promoter region to form DNA secondary structures suggests that the transition from the B-DNA to non-B-DNA conformation may play an important role in bcl-2 transcriptional regulation. Furthermore, the two adjacent large lateral loops in the i-motif structure provide an unexpected opportunity for protein and small molecule recognition.
    DOI:
    10.1021/ja9076292
  • 作为产物:
    描述:
    三甲基氯硅烷benzo[g]quinazoline-2,4(1H,3H)-dione硫酸氢铵六甲基二硅氮烷 作用下, 以 acetamide 为溶剂, 生成
    参考文献:
    名称:
    The i-Motif in the bcl-2 P1 Promoter Forms an Unexpectedly Stable Structure with a Unique 8:5:7 Loop Folding Pattern
    摘要:
    Transcriptional regulation of the bcl-2 proto-oncogene is highly complex, with the majority of transcription driven by the P1 promoter site and the interaction of multiple regulatory proteins. A guanine- and cytosine-rich (GC-rich) region directly upstream of the P1 site has been shown to be integral to bcl-2 promoter activity, as deletion or mutation of this region significantly increases transcription. This GC-rich element consists of six contiguous runs of guanines and cytosines that have the potential to adopt DNA secondary structures, the G-quadruplex and i-motif, respectively. Our laboratory has previously demonstrated that the polypurine-rich strand of the bcl-2 promoter can form a mixture of three different G-quadruplex structures. In this current study, we demonstrate that the complementary polypyrimidine-rich strand is capable of forming one major intramolecular i-motif DNA secondary structure with a transition pH of 6.6. Characterization of the i-motif folding pattern using mutational studies coupled with circular dichroic spectra and thermal stability analyses revealed an 8:57 loop conformation as the predominant structure at pH 6.1. The folding pattern was further supported by chemical footprinting with bromine. In addition, a novel assay involving the sequential incorporation of a fluorescent thymine analog at each thymine position provided evidence of a capping structure within the top loop region of the i-motif. The potential of the GC-rich element within the bcl-2 promoter region to form DNA secondary structures suggests that the transition from the B-DNA to non-B-DNA conformation may play an important role in bcl-2 transcriptional regulation. Furthermore, the two adjacent large lateral loops in the i-motif structure provide an unexpected opportunity for protein and small molecule recognition.
    DOI:
    10.1021/ja9076292
点击查看最新优质反应信息

文献信息

  • Stereoselective <i>N</i>-Glycosylation of 2-Deoxythioribosides for Fluorescent Nucleoside Synthesis
    作者:Guillaume Mata、Nathan W. Luedtke
    DOI:10.1021/jo3014929
    日期:2012.10.19
    An efficient method for the N-2-deoxyribosylation of modified nucleobases by 2-deoxythioriboside donors is reported. In the presence of an in situ silylated nudeobase, thioglycosides can be activated with NIS/HOTf to give nucleosides in high yields and with good beta-selectivity. By tuning the protecting groups on the C3 and CS hydroxyls, alpha/beta ratios ranging from 1.0:4.0 to 4.5:1.0 can be obtained. This strategy is applicable to the synthesis of various nucleosides, including ring-expanded pyrimidine derivatives containing sulfur that have previously been reported in low yields. The utility of this approach is further demonstrated by the synthesis of fluorescent nucleosides analogues such as quinazoline and oxophenothiazine that should find broad utility in DNA-folding and recognition studies.
查看更多