Development of Novel G-Protein-Coupled Receptor 54 Agonists with Resistance to Degradation by Matrix Metalloproteinase
摘要:
Kisspeptin-GPR54 signaling is involved in the suppression of cancer metastasis and regulation of hormonal secretion. Recently, matrix metalloproteinase mediated deactivation of kisspeptins through hydrolysis of the Gly-Leu peptide bond has been reported. In the present report, GPR54 agonistic peptides having several nonhydrolyzable Gly-Leu dipeptide isosteres were designed and synthesized. (E)-Alkene- and hydroxyethylene-type isostere-containing analogues maintained the original activity with higher stability in murine serum and resistance to MMP-9-mediated cleavage.
Development of Novel G-Protein-Coupled Receptor 54 Agonists with Resistance to Degradation by Matrix Metalloproteinase
摘要:
Kisspeptin-GPR54 signaling is involved in the suppression of cancer metastasis and regulation of hormonal secretion. Recently, matrix metalloproteinase mediated deactivation of kisspeptins through hydrolysis of the Gly-Leu peptide bond has been reported. In the present report, GPR54 agonistic peptides having several nonhydrolyzable Gly-Leu dipeptide isosteres were designed and synthesized. (E)-Alkene- and hydroxyethylene-type isostere-containing analogues maintained the original activity with higher stability in murine serum and resistance to MMP-9-mediated cleavage.
Neurokinin B (NKB) regulates the release of gonadotropin-releasing hormone (GnRH) via activation of the neurokinin-3 receptor (NK3R). We evaluated the biological stability of NK3R selective agonists to develop novel NK3R agonists to regulate reproductive functions. On the basis of degradation profiles, several peptidomimetic derivatives were designed. The modification of senktide with (E)-alkene dipeptide isostere generated a novel potent NK3R agonist with high stability and prolonged bioactivity.
US8592379B2
申请人:——
公开号:US8592379B2
公开(公告)日:2013-11-26
Development of Novel G-Protein-Coupled Receptor 54 Agonists with Resistance to Degradation by Matrix Metalloproteinase
作者:Kenji Tomita、Shinya Oishi、Hiroaki Ohno、Stephen C. Peiper、Nobutaka Fujii
DOI:10.1021/jm800930w
日期:2008.12.11
Kisspeptin-GPR54 signaling is involved in the suppression of cancer metastasis and regulation of hormonal secretion. Recently, matrix metalloproteinase mediated deactivation of kisspeptins through hydrolysis of the Gly-Leu peptide bond has been reported. In the present report, GPR54 agonistic peptides having several nonhydrolyzable Gly-Leu dipeptide isosteres were designed and synthesized. (E)-Alkene- and hydroxyethylene-type isostere-containing analogues maintained the original activity with higher stability in murine serum and resistance to MMP-9-mediated cleavage.