Positional reactivity of dibenzofuran in electrophilic substitutions
摘要:
Isomer distributions of dibenzofuran (DBF) in Friedel-Crafts acylations, Friedel-Crafts alkylations, and nitrations have been determined. The 2- and 3-positions of DBF represents most of the total reactivity. However, the ratio of 2- to 3-isomers greatly varied, depending on the nature of the electrophile. The positional reactivities have been found to be in the following sequence: 2- > 3- > 1- > 4-positions for Friedel-Crafts acylations, Friedel-Crafts benzylations, and nitrations with alkyl nitrate/Lewis acid or nitronium tetrafluoroborate. The ratios for acylations varied over a range from 13.1 to 2.9, while for benzylations and nitrations from 2.0 to 1.0. In contrast, for nitrations of DBF with nitric acid a different reactivity order was found: 3- > 2- > 1- > 4-, with the ratio varying from 0.8 to 0.03 depending on the nature of solvents used. The selectivity for the 3-substitution increased with increase in nitronium ion-like character of nitrating reagents. In particular, nitration with nitric acid in dichloromethane gave mostly 3-nitro-DBF (95% of the four possible isomeric mixture). The charge-transfer nitration with tetranitromethane under the UV irradiation has shown a similar isomer distribution to that in nitration with nitric acid. The MNDO calculations predicts that the late transition-state model (by sigma-complex) favors reactions at the 2-position while the early transition-state model (by HOMO electron density) leads to the 3-substitution.
Positional reactivity of dibenzofuran in electrophilic substitutions
摘要:
Isomer distributions of dibenzofuran (DBF) in Friedel-Crafts acylations, Friedel-Crafts alkylations, and nitrations have been determined. The 2- and 3-positions of DBF represents most of the total reactivity. However, the ratio of 2- to 3-isomers greatly varied, depending on the nature of the electrophile. The positional reactivities have been found to be in the following sequence: 2- > 3- > 1- > 4-positions for Friedel-Crafts acylations, Friedel-Crafts benzylations, and nitrations with alkyl nitrate/Lewis acid or nitronium tetrafluoroborate. The ratios for acylations varied over a range from 13.1 to 2.9, while for benzylations and nitrations from 2.0 to 1.0. In contrast, for nitrations of DBF with nitric acid a different reactivity order was found: 3- > 2- > 1- > 4-, with the ratio varying from 0.8 to 0.03 depending on the nature of solvents used. The selectivity for the 3-substitution increased with increase in nitronium ion-like character of nitrating reagents. In particular, nitration with nitric acid in dichloromethane gave mostly 3-nitro-DBF (95% of the four possible isomeric mixture). The charge-transfer nitration with tetranitromethane under the UV irradiation has shown a similar isomer distribution to that in nitration with nitric acid. The MNDO calculations predicts that the late transition-state model (by sigma-complex) favors reactions at the 2-position while the early transition-state model (by HOMO electron density) leads to the 3-substitution.
Carboxylic acids are an abundant and structurally diverse class of commercially available materials, which are commonly used as stable reagents in organic synthesis. The Suzuki–Miyauracoupling reaction directly using carboxylic acid as a substrate has been rarely reported. Here, we report an efficient coupling reaction of carboxylic acids with arylboronicacids in toluene in the presence of IPrCl-Cl
羧酸是一种丰富且结构多样的市售材料,通常用作有机合成中的稳定试剂。很少报道直接使用羧酸作为底物的 Suzuki-Miyaura 偶联反应。在此,我们报道了在 IPrCl-Cl、Pd(OAc) 2、PPh 3和 K 3 PO 4 ·7H 2 O存在下,羧酸与芳基硼酸在甲苯中在 90 °C 下的有效偶联反应,得到相应的芳基酮。