Regiochemistry of the Condensation of 2-Aroyl-cyclohexanones and 2-Cyanoacetamide: <sup>13</sup>C-Labeling Studies and Semiempirical MO Calculations
作者:Oscar P. J. van Linden、Maikel Wijtmans、Luc Roumen、Lonneke Rotteveel、Rob Leurs、Iwan. J. P. de Esch
DOI:10.1021/jo301138w
日期:2012.9.7
Hydroxy-aryl-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles represent interesting chemical scaffolds, but synthetic access to these compounds is limited. The reaction of 2-aroyl-cyclohexanones with 2-cyanoacetamide and base in ethanol has been reported to lead to the formation of the tetrahydroisoquinoline isomer. We show that depending on the electronic nature of the para-substituent on the aryl ring, formation of the regioisomeric tetrahydroquinoline isomer can significantly compete. The electron-donating or -withdrawing properties of the para-substituent of the aryl ring determines the ratio of product isomers. A series of 2-aroyl-cyclohexanones, with para-substituents ranging from electron-donating to electron-withdrawing, were reacted with [2-C-13]-cyanoacetamide. The product ratio and absolute regiochemistry were directly determined by quantitative C-13, HMBC, and NOESY NMR spectroscopy on the reaction mixtures. A clear relationship between the regioisomeric product ratio and the Hammett sigma values of the substituents is demonstrated. This is explained by the separate in situ yields, which reveal that the pathway leading to the tetrahydroquinoline regioisomer is significantly more sensitive toward the electronic nature of the para-substituent than the pathway leading to the tetrahydroisoquinoline. Semiempirical AM1 molecular orbital calculations on the starting electrophile 2-aroyl-cyclohexanone support a correlation between the energy of the LUMOs and the regioisomeric product ratio. Our results facilitate synthetic access to a range of these interesting synthetic intermediates.
Previously, ethyl 4-(1-benzyl-1H-indazol-3-yl)benzoate (YD-3) was identified by us as the first non-peptide protease-activated receptor 4 (PAR4) antagonist. To continue on our development of novel anti-PAR4 agents, YD-3 was used as a lead compound and a series of its derivatives were synthesized and evaluated for their selective anti-PAR4 activity. Through structure-activity relationship (SAR) study, we identified the important functional groups contributing to anti-PAR4 activity, and these functional groups were kept intact during subsequent structural modification. Several new compounds with anti-PAR4 activity comparable to YD-3 were identified. Among them, ethyl 4-[1-(3-chlorobenzyl)-1H-indazol-3-yl]benzoate (33) showed the most potent inhibitory effect on PAR4-mediated platelet aggregation, ATP release, and P-selectin expression. On the other hand, ethyl 4-(1-phenyl-1H-indazol-3-yl)benzoate (83) exhibited dual inhibitory effects on PAR4 and thromboxane formation from arachidonic acid. The above findings can be used as guidelines for development of novel antiplatelet drug candidates. (c) 2008 Published by Elsevier Ltd.