The first highly enantioselective hydrogenation of simple indoles was developed with a Brønstedacid as an activator to form the iminium intermediate in situ, which was hydrogenated using Pd(OCOCF(3))(2)/(R)-H8-BINAP catalyst system with up to 96% ee. The present method provides an efficient route to enantioenriched 2-substituted and 2,3-disubstituted indolines.
98% ee using a strong Brønsted acid as the activator. This methodology was applied in the facile synthesis of biologically active products containing a chiral indoline skeleton. The mechanism of Pd-catalyzed asymmetric hydrogenation was investigated as well. Isotope-labeling reactions and ESI-HRMS proved that an iminium salt formed by protonation of the C═C bond of indoles was the significant intermediate