Expanded acceptor substrates flexibility study of flavonol 7-O-rhamnosyltransferase, AtUGT89C1 from Arabidopsis thaliana
摘要:
Acceptor substrates flexibility of previously characterized flavonol 7-O-rhamnosyltransferase (AtUGT89C1) from Arabidopsis thaliana was explored with an endogenous nucleotide diphosphate sugar and five different classes of flavonoids (flavonols, flavones, flavanones, chalcone and stilbenes) through a biotransformation approach. In contrast to the previous reports, this study highlights the expanded acceptor substrate promiscuity of AtUGT89C1 for the regiospecific glycosylation of diverse class of flavonoids at 7-hydroxyl position using microbial thymidine diphosphate (TDP)-L-rhamnose as sugar donor instead of uridine diphosphate-L-rhamnose. We examine the biocatalytic potential of AtUGT89C1 using endogenous sugar (TDP-L-rhamnose) from E. coli to generate a library of flavonoid 7-O-rhamnosides. (C) 2015 Elsevier Ltd. All rights reserved.
activity of 20 different classes of 59 structurally different natural and non-natural products. Both enzymes transferred various sugars at three nucleophilic groups (OH, NH2, SH) of diverse compounds to produce O-, N-, and S-glycosides. The enzymes also displayed a catalytic reversibility potential for a one-pot transglycosylation, thus bestowing a cost-effective application in biosynthesis of glycodiversified
Acceptor substrates flexibility of previously characterized flavonol 7-O-rhamnosyltransferase (AtUGT89C1) from Arabidopsis thaliana was explored with an endogenous nucleotide diphosphate sugar and five different classes of flavonoids (flavonols, flavones, flavanones, chalcone and stilbenes) through a biotransformation approach. In contrast to the previous reports, this study highlights the expanded acceptor substrate promiscuity of AtUGT89C1 for the regiospecific glycosylation of diverse class of flavonoids at 7-hydroxyl position using microbial thymidine diphosphate (TDP)-L-rhamnose as sugar donor instead of uridine diphosphate-L-rhamnose. We examine the biocatalytic potential of AtUGT89C1 using endogenous sugar (TDP-L-rhamnose) from E. coli to generate a library of flavonoid 7-O-rhamnosides. (C) 2015 Elsevier Ltd. All rights reserved.
Cooperation of Two Bifunctional Enzymes in the Biosynthesis and Attachment of Deoxysugars of the Antitumor Antibiotic Mithramycin
作者:Guojun Wang、Pallab Pahari、Madan K. Kharel、Jing Chen、Haining Zhu、Steven G. Van Lanen、Jürgen Rohr
DOI:10.1002/anie.201205414
日期:2012.10.15
Twobifunctionalenzymes cooperate in the assembly and the positioning of two sugars, D‐olivose and D‐mycarose, of the anticancer antibioticmithramycin. MtmC finishes the biosynthesis of both sugar building blocks depending on which MtmGIV activity is supported. MtmGIV transfers these two sugars onto two structurally distinct acceptor substrates. The dual function of these enzymes explains two essential