4-Bromo-2-(piperidin-1-yl)thiazol-5-yl-phenyl methanone (12b) inhibits Na+/K+-ATPase and Ras oncogene activity in cancer cells
摘要:
The in vitro growth inhibitory activity of 26 thiazoles (including 4-halogeno-2,5-disubtituted-1,3-thiazoles) and 5 thienothiazoles was assessed on a panel of 6 human cancer cell lines, including glioma cell lines. (4-Chloro-2-(piperidin-1-yl)thiazol-5-yl)(phenyl)methanone (12a) and (4-bromo-2-(piperidin-1-yl)thiazol-5-yl)(phenyl)methanone (12b) displayed similar to 10 times greater in vitro growth inhibitory activity than perillyl alcohol (POH), which therapeutically benefits glioma patients through the inhibition of both alpha-1 Na+/K+-ATPase (NAK) and Ras oncogene activity. The in vitro cytostatic activities (as revealed by quantitative videomicroscopy) displayed by 12a and 12b were independent of the intrinsic resistance to pro-apoptotic stimuli associated with cancer cells. Compounds 12a and 12b displayed relatively similar inhibitory activities on purified guinea pig brain preparations that mainly express NAK alpha-2 and alpha-3 subunits, whereas only compound 12b was efficacious against purified guinea pig kidney preparations that mainly express the NAK alpha-1 subunit, which is also expressed in gliomas, melanomas and non-small-cell lung cancers NSCLCs. (C) 2013 Elsevier Masson SAS. All rights reserved.
One-pot synthesis and biological evaluation of 2-pyrrolidinyl-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)thiazole: A unique, highly active antimicrotubule agent
A wide variety of small molecules with diverse molecular scaffolds inhibit microtubule formation. In this article we report a one-pot procedure for the preparation of a novel 2-(N-pyrrolidinyl)-4-amino-5-(3',4',5'-trimethoxybenzoyl)thiazole in which the size of the substituent at the C-2 position of the thiazole ring plays an essential role in compound activity. The most active agent (31) inhibited at sub-micromolar concentrations the growth of tumor cell lines. It also inhibited tubulin polymerization with an activity quantitatively similar to that of CA-4, and treatment of HeLa cells resulted in their arrest at the G2-M phase of the cell cycle. Furthermore, 3f was effective against multidrug resistant cancer cells and inhibited the growth of the HT-29 xenograft in a nude mouse model. This indicated that 31 is a promising new antimitotic agent with encouraging preclinical potential. (C) 2011 Elsevier Masson SAS. All rights reserved.