摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

α-D-allopyranosyl phosphate | 354112-38-2

中文名称
——
中文别名
——
英文名称
α-D-allopyranosyl phosphate
英文别名
allose-1-phosphate;[(2R,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate
α-D-allopyranosyl phosphate化学式
CAS
354112-38-2
化学式
C6H13O9P
mdl
——
分子量
260.138
InChiKey
HXXFSFRBOHSIMQ-QZABAPFNSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.8
  • 重原子数:
    16
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    157
  • 氢给体数:
    6
  • 氢受体数:
    9

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y4 Receptor
    摘要:
    P2Y(2) and P2Y(4) receptors are G protein-coupled receptors, activated by UTP and dinudeoside tetraphosphates, which are difficult to distinguish pharmacologically for lack of potent and selective ligands. We structurally varied phosphate and uracil moieties in analogues of pyrimidine nucleoside 5'-triphosphates and 5'-tetraphosphate esters. P2Y(4) receptor potency in phospholipase C stimulation in transfected 1321N1 human astrocytoma cells was enhanced in N-4-alkyloxycytidine derivatives. OH groups on a terminal delta-glucose phosphoester of uridine 5'-tetraphosphate were inverted or substituted with H or F to probe H-bonding effects. N-4-(Phenylpropoxy)-CTP 16 (MRS4062), Up(4)-[1]3'-deoxy-3'-fluoroglucose 34 (MRS2927), and N-4-(phenylethoxy)-CTP 15 exhibit >= 10-fold selectivity for human P2Y(4) over P2Y(2) and P2Y(6) receptors (EC50 values 23, 62, and 73 nM, respectively). delta-3-Chlorophenyl phosphoester 21 of Up(4) activated P2Y(2) but not P2Y(4) receptor. Selected nucleotides tested for chemical and enzymatic stability were much more stable than UTP. Agonist docking at CXCR4-based P2Y(2) and P2Y(4) receptor models indicated greater steric tolerance of N-4-phenylpropoxy group at P2Y(4). Thus, distal structural changes modulate potency, selectivity, and stability of extended uridine tetraphosphate derivatives, and we report the first P2Y(4) receptor-selective agonists.
    DOI:
    10.1021/jm101591j
  • 作为产物:
    描述:
    D-allosesodium acetate乙酸酐磷酸 作用下, 反应 8.0h, 生成 α-D-allopyranosyl phosphate
    参考文献:
    名称:
    Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y4 Receptor
    摘要:
    P2Y(2) and P2Y(4) receptors are G protein-coupled receptors, activated by UTP and dinudeoside tetraphosphates, which are difficult to distinguish pharmacologically for lack of potent and selective ligands. We structurally varied phosphate and uracil moieties in analogues of pyrimidine nucleoside 5'-triphosphates and 5'-tetraphosphate esters. P2Y(4) receptor potency in phospholipase C stimulation in transfected 1321N1 human astrocytoma cells was enhanced in N-4-alkyloxycytidine derivatives. OH groups on a terminal delta-glucose phosphoester of uridine 5'-tetraphosphate were inverted or substituted with H or F to probe H-bonding effects. N-4-(Phenylpropoxy)-CTP 16 (MRS4062), Up(4)-[1]3'-deoxy-3'-fluoroglucose 34 (MRS2927), and N-4-(phenylethoxy)-CTP 15 exhibit >= 10-fold selectivity for human P2Y(4) over P2Y(2) and P2Y(6) receptors (EC50 values 23, 62, and 73 nM, respectively). delta-3-Chlorophenyl phosphoester 21 of Up(4) activated P2Y(2) but not P2Y(4) receptor. Selected nucleotides tested for chemical and enzymatic stability were much more stable than UTP. Agonist docking at CXCR4-based P2Y(2) and P2Y(4) receptor models indicated greater steric tolerance of N-4-phenylpropoxy group at P2Y(4). Thus, distal structural changes modulate potency, selectivity, and stability of extended uridine tetraphosphate derivatives, and we report the first P2Y(4) receptor-selective agonists.
    DOI:
    10.1021/jm101591j
点击查看最新优质反应信息

文献信息

  • Active-site engineering of nucleotidylyltransferases and general enzymatic methods for the synthesis of natural and "unnatural" UDP- and TDP-nucleotide sugars
    申请人:——
    公开号:US20030055235A1
    公开(公告)日:2003-03-20
    The present invention provides mutant nucleotidylyl-transferases, such as E p , having altered substrate specificity; methods for their production; and methods of producing nucleotide sugars, which utilize these nucleotidylyl-transferases. The present invention also provides methods of synthesizing desired nucleotide sugars using natural and/or modified Ep or other nucleotidyltransferases; and nucleotide sugars sythesized by the present methods. The present invention further provides new glycosyl phosphates, and methods for making them.
    本发明提供了一种突变型核苷酸转移酶,如E p ,具有改变的底物特异性;其生产方法;以及利用这些核苷酸转移酶生产核苷酸糖的方法。本发明还提供了使用天然和/或修饰的Ep或其他核苷酸转移酶合成所需的核苷酸糖的方法;以及通过本发明方法合成的核苷酸糖。本发明进一步提供了新的糖基磷酸酯,及其制造方法。
  • ACTIVE-SITE ENGINEERING OF NUCLEOTIDYLYLTRANSFERASES AND GENERAL ENZYMATIC METHODS FOR THE SYNTHESIS OF NATURAL AND "UNNATURAL" UDP- AND TDP-NUCLEOTIDE SUGARS
    申请人:THORSON Jon
    公开号:US20070178487A1
    公开(公告)日:2007-08-02
    The present invention provides mutant nucleotidylyl-transferases, such as E p , having altered substrate specificity; methods for their production; and methods of producing nucleotide sugars, which utilize these nucleotidylyl-transferases. The present invention also provides methods of synthesizing desired nucleotide sugars using natural and/or modified E p or other nucleotidyltransferases; and nucleotide sugars sythesized by the present methods. The present invention further provides new glycosyl phosphates, and methods for making them.
    本发明提供了突变核苷酸转移酶,例如Ep,具有改变的底物特异性;其生产方法;以及利用这些核苷酸转移酶生产核苷酸糖的方法。本发明还提供了使用天然和/或改性的Epor或其他核苷酸转移酶合成所需核苷酸糖的方法;以及通过本方法合成的核苷酸糖。本发明还提供了新的糖基磷酸酯,以及制备它们的方法。
  • A General Enzymatic Method for the Synthesis of Natural and “Unnatural” UDP- and TDP-Nucleotide Sugars
    作者:Jiqing Jiang、John B. Biggins、Jon S. Thorson
    DOI:10.1021/ja001444y
    日期:2000.7.1
  • Gene Therapy of Cancer: Activation of Nucleoside Prodrugs with<i>E. coli</i>Purine Nucleoside Phosphorylase
    作者:John A. Secrist、William B. Parker、Paula W. Allan、L. Lee Bennett、William R. Waud、Jackie W. Truss、Anita T. Fowler、John A. Montgomery、Steven E. Ealick、Alan H. Wells、G. Yancey Gillespie、V. K. Gadi、Eric J. Sorscher
    DOI:10.1080/15257779908041562
    日期:1999.4
    During the last few years, many gene therapy strategies have been developed for various disease targets. The development of anticancer gene therapy strategies to selectively generate cytotoxic nucleoside or nucleotide analogs is an attractive goal. One such approach involves the delivery of herpes simplex virus thymidine kinase followed by the acyclic nucleoside analog ganciclovir. We have developed another gene therapy methodology for the treatment of cancer that has several significant attributes. Specifically, our approach involves the delivery off. coli purine nucleoside phosphorylase, followed by treatment with a relatively non-toxic nucleoside prodrug that is cleaved by the enzyme to a toxic compound. This presentation describes the concept, details our search for suitable prodrugs, and summarizes the current biological data.
  • US7122359B2
    申请人:——
    公开号:US7122359B2
    公开(公告)日:2006-10-17
查看更多