摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(prop-2-enoyl)-β-D-galactopyranosylamine | 1053341-65-3

中文名称
——
中文别名
——
英文名称
N-(prop-2-enoyl)-β-D-galactopyranosylamine
英文别名
N-(prop-2-enoyl)-β-D-glucopyranosylamine;N-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]prop-2-enamide
N-(prop-2-enoyl)-β-D-galactopyranosylamine化学式
CAS
1053341-65-3
化学式
C9H15NO6
mdl
——
分子量
233.221
InChiKey
BAQRSNLDJHUCSP-DDIGBBAMSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.9
  • 重原子数:
    16
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    119
  • 氢给体数:
    5
  • 氢受体数:
    6

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    通过 Pt(0) 催化的氢膦化形成二膦生物共轭物。用于生物分子的 Technetium-99m 和铼-188 放射性标记的多功能螯合剂平台
    摘要:
    将靶向生物分子附加到螯合剂上的能力,可以有效协调诊断成像放射性核素99m Tc 和治疗放射性核素188 Re,有可能实现针对受体的疾病“治疗诊断”治疗。在这里,我们表明,Pt(0) 催化的氢膦化反应非常适合具有生物分子部分的二膦衍生化,能够有效合成 Ph 2 PCH 2 CH 2 P(CH 2 CH 2 –Glc) 2 ( L ,其中 Glc = 葡萄糖部分)使用易于获得的 Ph 2 PCH 2 CH 2 PH 2和丙烯酰基衍生物。结果表明,脱保护的葡萄糖的丙烯酸酯衍生物的氢膦化可以在水性介质中进行。此外,所得的葡萄糖-螯合剂缀合物可以用99m Tc(V) 或188 Re(V) 以高放射化学产率 (>95%) 进行放射性标记,以提供顺式- 和反式-[M(O) 2的可分离混合物L 2 ] + (M = Tc, Re)。单光子发射计算机断层扫描 (SPECT) 成像和健康小鼠的离体生物分布表明
    DOI:
    10.1021/acs.inorgchem.2c04008
  • 作为产物:
    描述:
    葡萄糖丙烯酰氯碳酸氢铵sodium carbonate 作用下, 以 四氢呋喃 为溶剂, 反应 30.58h, 生成 N-(prop-2-enoyl)-β-D-galactopyranosylamine
    参考文献:
    名称:
    Synthesis of β-d-glucopyranuronosylamine in aqueous solution: kinetic study and synthetic potential
    摘要:
    A systematic study of the synthesis of beta-D-glucopyranuronosylamine in water is reported. When sodium D-glucuronate was reacted with ammonia and/or volatile ammonium salts in water a mixture of beta-D-glucopyranuronosylamine and ammonium N-8-D-glucopyranuronosyl carbamate was obtained at a rate that strongly depended on the experimental conditions. In general higher ammonia and/or ammonium salt concentrations led to a faster conversion of the starting sugar into intermediate species and of the latter into the final products. Yet, some interesting trends and exceptions were observed. The use of saturated ammonium carbamate led to the fastest rates and the highest final yields of beta-D-glucopyranuronosylamine/carbamate. With the exception of 1 M ammonia and 0.6 M ammonium salt, after 24 h of reaction all tested protocols led to higher yields of beta-glycosylamine/carbamate than concentrated commercial ammonia alone. The mole fraction of alpha-D-glucopyranuronosylamine/carbamate at equilibrium was found to be 7-8% in water at 30 degrees C. Concerning bis(beta-D-glucopyranuronosyl)amine, less than 3% of it is formed in all cases, with a minimum value of 0.5% in the case of saturated ammonium carbamate. Surprisingly, the reaction was consistently faster in the case of sodium D-glucuronate than in the case of D-glucose (4-8 times faster). Finally, the synthetic usefulness of our approach was demonstrated by the synthesis of three N-acyl-beta-D-glucopyranuronosylamines and one N-alkylcarbamoyl-beta-D-glucopyranuronosylamine directly in aqueous-organic solution without resorting to protective group chemistry. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.carres.2011.08.018
点击查看最新优质反应信息

文献信息

  • A Radical Approach to Making Unnatural Amino Acids: Conversion of C−S Bonds in Cysteine Derivatives into C−C Bonds
    作者:Yingwei Wang、Li‐Fan Deng、Xia Zhang、Ze‐Dong Mou、Dawen Niu
    DOI:10.1002/ange.202012503
    日期:2021.1.25
    AbstractHere we report a general approach to make unnatural amino acids from readily available cysteine derivatives. This method capitalizes on an intramolecular radical substitution process that generates alkyl radicals through C−S cleavage. The resulting alkyl radicals partook in diverse C−C bond forming events. These reactions proceed under mild, photocatalytic conditions at room temperature, and
    摘要在这里,我们报告了一种从容易获得的半胱酸衍生物中制备非天然氨基酸的通用方法。该方法利用分子内自由基取代过程,通过 C−S 裂解产生烷基自由基。由此产生的烷基自由基参与多种 C−C 键形成事件。这些反应在室温下温和的光催化条件下进行,并且可以在空气中进行。这些转化的实用性在以前难以获得的各种非天然氨基酸和肽的直接合成中得到了进一步证明。
查看更多