摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

UDP-4-amino sugar | 877466-28-9

中文名称
——
中文别名
——
英文名称
UDP-4-amino sugar
英文别名
uridine 5′-diphosphate-2,4,6-trideoxy-2-acetamido-4-aminoglucose;UDP-2-acetamido-4-amino-2,4,6-trideoxy-alpha-D-glucose;[(2R,3R,4S,5S,6R)-3-acetamido-5-amino-4-hydroxy-6-methyloxan-2-yl] [[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] hydrogen phosphate
UDP-4-amino sugar化学式
CAS
877466-28-9
化学式
C17H28N4O15P2
mdl
——
分子量
590.375
InChiKey
FUUMLYWEEZBCQR-UINYWEPJSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -8.7
  • 重原子数:
    38
  • 可旋转键数:
    9
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.71
  • 拓扑面积:
    286
  • 氢给体数:
    8
  • 氢受体数:
    16

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    UDP-4-amino sugardisodium hydrogenphosphate 、 Campylobacter jejuni hexa-His-tagged PglD acetyltransferase 、 Escherichia coli NanA sialic acid aldolase 、 Legionella pneumophila NeuC hydrolyzing 2-epimerase 、 三羟甲基氨基甲烷盐酸盐 、 magnesium chloride 作用下, 以 为溶剂, 反应 51.0h, 生成 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-β-D-galactonon-2-ulosonic acid
    参考文献:
    名称:
    Enzymatic synthesis and properties of glycoconjugates with legionaminic acid as a replacement for neuraminic acid
    摘要:
    除硅醛酸外,细菌还产生其他几种非乌洛托品酸,包括军团酰胺酸(Leg)。这种酸的立体化学结构与硅藻酸完全相同,但增加了 9-脱氧基团和 7-氨基基团。为了探索用 Leg 的双乙酰化形式--双乙酰军团胺酸(Leg5Ac7Ac)--取代糖醛酸残基(Neu5Ac)对生物的影响,我们用细菌和哺乳动物的部分硅烷基转移酶测试了 CMP-Leg5Ac7Ac 作为供体底物的效果。CMP-Leg5Ac7Ac 是通过克隆空肠弯曲杆菌 N-聚糖途径中的巴基氨基部分和嗜肺军团菌途径中的酶在体外合成的。我们使用乳糖的荧光衍生物、Galβ1,4GlcNAcβ和T-抗原(Galβ1,3GalNAcα)作为受体,测试了八种不同的硅烷基转移酶,发现多杀性巴氏杆菌 PM0188h 和猪 ST3Gal1 硅烷基转移酶对 CMP-Leg5Ac7Ac 有显著的活性,与 CMP-Neu5Ac 相比,活性提高了 60%。光杆菌 α2,6硅烷基转移酶的活性较弱,相对活性为 6%。然后,Leg5Ac7Ac-α-2,3-乳糖产物作为底物与病毒、细菌和哺乳动物来源的六种硅烷基化酶进行了测试。结果表明,六种病毒、细菌和哺乳动物来源的半乳苷酸酶的活性都远远低于相应的半乳苷酸底物,其中流感病毒 N1 的活性最高,而人类 NEU2 的活性最低。这些结果表明了生产以 Leg5Ac7Ac 残基为末端糖的糖醛酸共轭物的可行性,这种共轭物应具有新的生物特性。
    DOI:
    10.1093/glycob/cwq135
  • 作为产物:
    描述:
    尿苷5'-(2-乙酰氨基-2-脱氧-ALPHA-D-葡糖基焦磷酸酯)L-谷氨酸磷酸吡哆醛 、 PglE enzyme from Campylobacter jejuni 、 PglF cloned enzyme from Campylobacter jejuni 作用下, 以 aq. buffer 为溶剂, 以65%的产率得到UDP-4-amino sugar
    参考文献:
    名称:
    辅因子驱动的级联反应使糖核苷酸的高效制备成为可能
    摘要:
    糖核苷酸的复杂从头生物合成被重组为级联反应。通过添加辅因子再生系统提供的过量辅因子,将级联反应驱动到目标糖核苷酸的形成,从而产生高合成产量。
    DOI:
    10.1002/anie.202115696
点击查看最新优质反应信息

文献信息

  • Biochemical Characterization of the O-Linked Glycosylation Pathway in <i>Neisseria gonorrhoeae</i> Responsible for Biosynthesis of Protein Glycans Containing <i>N</i>,<i>N</i>′-Diacetylbacillosamine
    作者:Meredith D. Hartley、Michael J. Morrison、Finn Erik Aas、Bente Børud、Michael Koomey、Barbara Imperiali
    DOI:10.1021/bi2003372
    日期:2011.6.7
    The O-linked protein glycosylation pathway in Neisseria gonorrhoeae is responsible for the synthesis of a complex oligosaccharide on undecaprenyl diphosphate and subsequent en bloc transfer of the glycan to serine residues of select periplasmic proteins. Protein glycosylation (pgl) genes have been annotated on the basis of bioinformatics and top-down mass spectrometry analysis of protein modifications in pgl-null strains [Aas, F. E., et al. (2007) Mol. Microbiol. 65, 607-624; Vik, A., et al. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 4447-4452], but relatively little biochemical analysis has been performed to date. In this report, we present the expression, purification, and functional characterization of seven Pgl enzymes. Specifically, the enzymes studied are responsible for synthesis of an uncommon uridine diphosphate (UDP)-sugar (PglD, PglC, and PglB-acetyltransferase domain), glycan assembly (PglB-phospho-glycosyltransferase domain, PglA, PglE, and PglH), and final oligosaccharide transfer (PglO). UDP-2,4-diacetamido-2,4,6-trideoxy-alpha-D-hexose (DATDH), which is the first sugar in glycan biosynthesis, was produced enzymatically, and the stereochemistry was assigned as uridine diphosphate N'-diacetylbacillosamine (UDP-diNAcBac) by nuclear magnetic resonance characterization. In addition, the substrate specificities of the phospho-glycosyltransferase, glycosyltransferases, and oligosaccharyltransferase (OTase) were analyzed in vitro, and in most cases, these enzymes exhibited strong preferences for the native substrates relative to closely related glycans. In particular, PglO, the O-linked OTase, and PglB(Cj), the N-linked OTase from Campylobacter jejuni, preferred the native N. gonorrhoeae and C. jejuni substrates, respectively. This study represents the first comprehensive biochemical characterization of this important 0-linked glycosylation pathway and provides the basis for further investigations of these enzymes as antibacterial targets.
  • Enzymatic synthesis and properties of glycoconjugates with legionaminic acid as a replacement for neuraminic acid
    作者:D. C. Watson、S. Leclerc、W. W. Wakarchuk、N. M. Young
    DOI:10.1093/glycob/cwq135
    日期:2011.1.1
    In addition to sialic acid, bacteria produce several other nonulosonic acids, including legionaminic acid (Leg). This has exactly the same stereochemistry as sialic acid, with the added features of 9-deoxy and 7-amino groups. In order to explore the biological effects of replacing sialic acid residues (Neu5Ac) in glycoconjugates with Leg in its diacetylated form, diacetyllegionaminic acid (Leg5Ac7Ac), we tested CMP-Leg5Ac7Ac as a donor substrate with a selection of bacterial and mammalian sialyltransferases. The CMP-Leg5Ac7Ac was synthesized in vitro by means of cloned enzymes from the bacillosamine portion of the Campylobacter jejuni N-glycan pathway and from the Leg pathway of Legionella pneumophila. Using fluorescent derivatives of lactose, Galβ1,4GlcNAcβ and T-antigen (Galβ1,3GalNAcα) as acceptors, we tested eight different sialyltransferases and found that the Pasteurella multocida PM0188h and porcine ST3Gal1 sialyltransferases were significantly active with CMP-Leg5Ac7Ac, showing ∼60% activity when compared with CMP-Neu5Ac. The Photobacterium α2,6 sialyltransferase was weakly active, with ∼6% relative activity. The Leg5Ac7Ac-α-2,3-lactose product was then tested as a substrate with six sialidases of viral, bacterial and mammalian origin. All showed much lower activities than with the corresponding sialic acid substrate, with the influenza virus N1 being the most active and human NEU2 being the least active. These results show the feasibility of producing glycoconjugates with Leg5Ac7Ac residues as the terminal sugars, which should display novel biological properties.
    除硅醛酸外,细菌还产生其他几种非乌洛托品酸,包括军团酰胺酸(Leg)。这种酸的立体化学结构与硅藻酸完全相同,但增加了 9-脱氧基团和 7-氨基基团。为了探索用 Leg 的双乙酰化形式--双乙酰军团胺酸(Leg5Ac7Ac)--取代糖醛酸残基(Neu5Ac)对生物的影响,我们用细菌和哺乳动物的部分硅烷基转移酶测试了 CMP-Leg5Ac7Ac 作为供体底物的效果。CMP-Leg5Ac7Ac 是通过克隆空肠弯曲杆菌 N-聚糖途径中的巴基氨基部分和嗜肺军团菌途径中的酶在体外合成的。我们使用乳糖的荧光衍生物、Galβ1,4GlcNAcβ和T-抗原(Galβ1,3GalNAcα)作为受体,测试了八种不同的硅烷基转移酶,发现多杀性巴氏杆菌 PM0188h 和猪 ST3Gal1 硅烷基转移酶对 CMP-Leg5Ac7Ac 有显著的活性,与 CMP-Neu5Ac 相比,活性提高了 60%。光杆菌 α2,6硅烷基转移酶的活性较弱,相对活性为 6%。然后,Leg5Ac7Ac-α-2,3-乳糖产物作为底物与病毒、细菌和哺乳动物来源的六种硅烷基化酶进行了测试。结果表明,六种病毒、细菌和哺乳动物来源的半乳苷酸酶的活性都远远低于相应的半乳苷酸底物,其中流感病毒 N1 的活性最高,而人类 NEU2 的活性最低。这些结果表明了生产以 Leg5Ac7Ac 残基为末端糖的糖醛酸共轭物的可行性,这种共轭物应具有新的生物特性。
  • Cofactor‐Driven Cascade Reactions Enable the Efficient Preparation of Sugar Nucleotides
    作者:Yuan Zheng、Jiabin Zhang、Jeffrey Meisner、Wanjin Li、Yawen Luo、Fangyu Wei、Liuqing Wen
    DOI:10.1002/anie.202115696
    日期:2022.5.9
    The complex de novo biosynthesis of sugar nucleotides was reorganized as cascade reactions. The cascade reactions were driven toward the formation of the target sugar nucleotides through the addition of an excess amount of a cofactor provided by a cofactor regeneration system, thus resulting in high synthetic yields.
    糖核苷酸的复杂从头生物合成被重组为级联反应。通过添加辅因子再生系统提供的过量辅因子,将级联反应驱动到目标糖核苷酸的形成,从而产生高合成产量。
查看更多

同类化合物

阿拉伯糖基胸腺嘧啶 5'-三磷酸酯 阿拉伯呋喃糖基尿苷三磷酸酯 脱氧尿苷 5'-三磷酸酯 胸苷酸二钠 胸苷酸 胸苷二磷酸酯-L-鼠李糖 胸苷-5'-三磷酸 胸苷 3',5'-二磷酸酯 胸腺嘧啶脱氧核苷酸5-单磷酸对硝基苯酯钠盐 胞苷单磷酸酯-N-羟基乙酰基神经氨酸 胞苷5-(三氢二磷酸酯),化合物与2-氨基乙醇(1:1),单钠盐 胞苷5'-四磷酸酯 胞苷5'-单磷酸甲酯 胞苷-5’-二磷酸 胞苷-5’-三磷酸二钠盐 胞苷-5'-单磷酸-N-乙酰神经氨酸 胞苷 5’-单磷酸 胞苷 3',5'-二磷酸酯 胞苷 2ˊ,3ˊ-环一磷酸钠盐 胞磷托定 胞嘧啶-5'-二磷酸二钠 胞二磷胆碱 聚尿苷酸钾盐 聚(5-甲硫基尿苷单磷酸) 羟基甲基脱氧尿苷三磷酸酯 磷酸)二氢2'-脱氧-5-(甲氧基甲基)尿苷5'-( 碘脱氧尿苷酸 甲氨蝶呤5-氨基烯丙基-2'-脱氧尿苷5'-单磷酸酯 生物素-36-脱氧三磷酸胞苷 生物素-36-脱氧三磷酸尿苷 溴脱氧尿苷三磷酸酯 氨基嘧啶酮-4-二磷酸二胺-2-C-甲基-D-赤藓糖醇 尿苷酰基(2'->5')尿苷铵盐 尿苷二磷酸酯葡萄糖胺 尿苷二磷酸酯甘露糖 尿苷二磷酸酯半乳糖胺 尿苷二磷酸酯 N-乙酰基甘露糖胺 尿苷二磷酸酯 2-脱氧葡萄糖 尿苷二磷酰-N-乙酰基葡萄糖胺烯醇丙酮酸 尿苷5-单磷酸 尿苷5'-四磷酸酯 尿苷5'-二磷酸钠盐水合物 尿苷5'-二磷酰-alpha-D-葡萄糖-13C6二铵盐 尿苷5'-(三氢二磷酸酯)二钾盐 尿苷5'-(O-2-乙酰氨基-2-脱氧吡喃甘露糖酸-(1-4)-2-乙酰氨基-2-脱氧吡喃葡萄糖基二磷酸酯) 尿苷5'-(2-乙酰氨基-2-脱氧-ALPHA-D-葡糖基焦磷酸酯) 尿苷5'-(2-乙酰氨基-2,4-二脱氧-4-氟吡喃半乳糖基)二磷酸酯 尿苷3'-二磷酸酯5'-二磷酸酯 尿苷-半乳糖醛酸 尿苷-N-乙酰基葡萄糖胺糖醛酸