摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-deoxy-2-hydroxyacetamido-D-glucopyranose | 31505-80-3

中文名称
——
中文别名
——
英文名称
2-deoxy-2-hydroxyacetamido-D-glucopyranose
英文别名
N-glycolyl glucosamine;N-glycolyl-D-glucosamine;2-Desoxy-2-glycolamido-D-glucose;N-glycoloyl-D-glucosamine;2-hydroxy-N-[(3R,4R,5S,6R)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
2-deoxy-2-hydroxyacetamido-D-glucopyranose化学式
CAS
31505-80-3
化学式
C8H15NO7
mdl
——
分子量
237.21
InChiKey
KSWRTSFNOKOHBE-ZQLGFOCFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.4
  • 重原子数:
    16
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    140
  • 氢给体数:
    6
  • 氢受体数:
    7

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-deoxy-2-hydroxyacetamido-D-glucopyranose 在 N-acetylglucosamine 2-epimerase 、 5’-三磷酸腺苷 、 magnesium chloride 作用下, 以 aq. buffer 为溶剂, 反应 6.0h, 生成 N-glycolylmannosamine
    参考文献:
    名称:
    使用全细胞催化剂合成唾液酸,其衍生物和类似物
    摘要:
    唾液酸(Sias)是细胞表面聚糖的重要成分。大量使用Sias可以方便地开发基于碳水化合物的疫苗和小分子药物。现在,我们提出了一种通过使用全细胞催化剂来合成Sias的各种天然形式和非天然衍生物或类似物的简便方法,该方法是通过将包含必需酶基因的质粒添加到大肠杆菌的代谢工程菌株中来构建的。掺入的酶(N-乙酰氨基葡萄糖2-表异构酶和N-乙酰神经氨酸醛缩酶)使细胞催化剂可以通过易于扩展的发酵过程将各种简单廉价的糖类转化为各种与Sia相关的化合物。此外,使用这种全细胞生物转化结合三个常规酶促反应的合成提供了一系列复杂的含Sia的聚糖(唾液寡糖)及其带有不同取代基的衍生物。本文所述的方法应允许大规模且经济地生产Sias和唾液酸低聚糖,并且可以补充现有的化学和酶促策略。
    DOI:
    10.1002/chem.201703083
  • 作为产物:
    参考文献:
    名称:
    Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups
    摘要:
    The O-GlcNAc modification involves the attachment of single beta-O-linked N-acetylglucosamine residues to serine and threonine residues of nucleocytoplasmic proteins. Interestingly, previous biochemical and structural studies have shown that O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc from proteins, has an active site pocket that tolerates various N-acyl groups in addition to the N-acetyl group of GlcNAc. The remarkable sequence and structural conservation of residues comprising this pocket suggest functional importance. We hypothesized this pocket enables processing of metabolic variants of O-GlcNAc that could be formed due to inaccuracy within the metabolic machinery of the hexosamine biosynthetic pathway. In the accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, 28865-28881), N-glycolylglucosamine (GlcNGc) was shown to be a catabolite of NeuNGc. Here, we show that the hexosamine salvage pathway can convert GlcNGc to UDP-GlcNGc, which is then used to modify proteins with O-GlcNGc. The kinetics of incorporation and removal of O-GlcNGc in cells occur in a dynamic manner on a time frame similar to that of O-GlcNAc. Enzymatic activity of O-GlcNAcase (OGA) toward a GlcNGc glycoside reveals OGA can process glycolyl-containing substrates fairly efficiently. A bacterial homolog (BtGH84) of OGA, from a human gut symbiont, also processes O-GlcNGc substrates, and the structure of this enzyme bound to a GlcNGc-derived species reveals the molecular basis for tolerance and binding of GlcNGc. Together, these results demonstrate that analogs of GlcNAc, such as GlcNGc, are metabolically viable species and that the conserved active site pocket of OGA likely evolved to enable processing of mis-incorporated analogs of O-GlcNAc and thereby prevent their accumulation. Such plasticity in carbohydrate processing enzymes may be a general feature arising from inaccuracy in hexosamine metabolic pathways.
    DOI:
    10.1074/jbc.m112.363721
点击查看最新优质反应信息

文献信息

  • Enzymatic Synthesis of Trideuterated Sialosides
    作者:Zhi-P. Cai、Louis Conway、Ying Huang、Wen Wang、Pedro Laborda、Ting Wang、Ai Lu、Hong Yao、Kun Huang、Sabine Flitsch、Li Liu、Josef Voglmeir
    DOI:10.3390/molecules24071368
    日期:——
    surface proteins or lipid glycoconjugates of higher animals. Herein we describe the enzymatic synthesis of the two isotopically labeled sialic acid derivatives d3-X-Gal-α-2,3-Neu5Ac and d3-X-Gal-α-2,3-Neu5Gc. Using deuterium oxide as the reaction solvent, deuterium atoms could be successfully introduced during the enzymatic epimerization and aldol addition reactions when the sialosides were generated. NMR
    唾液酸是一类酸性单糖,通常存在于高等动物的细胞表面蛋白或脂质糖缀合物的末端。在此,我们描述了两种同位素标记的唾液酸衍生物 d3-X-Gal-α-2,3-Neu5Ac 和 d3-X-Gal-α-2,3-Neu5Gc 的酶促合成。使用氧化氘作为反应溶剂,当唾液酸生成时,在酶促差向异构化和羟醛加成反应过程中可以成功地引入氘原子。核磁共振和质谱分析证实所得唾液酸苷确实是三氘化的。这些化合物可能作为液相色谱/质谱分析中的内标用于唾液酸的生化或临床研究。
  • Hydrolytic and transglycosylation reactions of N-acyl modified substrates catalysed by β-N-acetylhexosaminidases
    作者:Pavla Fialová、Lenka Weignerová、Jana Rauvolfová、Věra Přikrylová、Andrea Pišvejcová、Rüdiger Ettrich、Marek Kuzma、Petr Sedmera、Vladimı́r Křen
    DOI:10.1016/j.tet.2003.10.111
    日期:2004.1
    hydrolytic and transglycosylation capabilities of 35 fungal β-N-acetylhexosaminidases with p-nitrophenyl 2-amino-2-deoxy-β-d-glucopyranoside and its four N-acyl derivatives (CHO, COCH2OH, COCH2CH3, COCF3) as substrates were tested. The preparation of four novel p-nitrophenyl disaccharides from these unnatural substrates catalysed by enzymes from Aspergillus oryzae, Penicillium oxalicum and Talaromyces flavus
    35种真菌β- N-乙酰基己糖胺酶与对硝基苯基2-氨基-2-脱氧-β-d-吡喃葡萄糖苷及其4种N-酰基衍生物(CHO,COCH 2 OH,COCH 2 CH 3的水解和转糖基化能力),COCF 3)作为底物进行了测试。的四种新型制备p硝基苯基二糖从由酶催化的这些非天然底物的米曲霉,草酸青霉和踝节菌属菌代表了相当大的扩展糖苷酶的合成潜力。
  • Synthé du 3-O-( -1-carboxyéthyl)-2-désoxy-2-glycolamido- -glucose (acide N-glycolylmuramique)
    作者:Pierre Sinaÿ
    DOI:10.1016/s0008-6215(00)86104-2
    日期:1971.3
  • AUGE, CLAUDINE;DAVID, SERGE;GAUTHERON, CHRISTINE;MALLERON, ANNIE;CAVAYE, +, NEW J. CHEM., 12,(1988) N 8-9, C. 733-744
    作者:AUGE, CLAUDINE、DAVID, SERGE、GAUTHERON, CHRISTINE、MALLERON, ANNIE、CAVAYE, +
    DOI:——
    日期:——
  • Synthesis of Sialic Acids, Their Derivatives, and Analogs by Using a Whole-Cell Catalyst
    作者:Xun Lv、Hongzhi Cao、Baixue Lin、Wei Wang、Wande Zhang、Qian Duan、Yong Tao、Xue-Wei Liu、Xuebing Li
    DOI:10.1002/chem.201703083
    日期:2017.10.26
    Sialic acids (Sias) are important constituents of cell surface glycans. Ready access to Sias in large quantities would facilitate the development of carbohydrate‐based vaccines and small‐molecule drugs. We now present a facile method for synthesizing various natural forms and non‐natural derivatives or analogs of Sias by using a whole‐cell catalyst, which is constructed by adding a plasmid containing
    唾液酸(Sias)是细胞表面聚糖的重要成分。大量使用Sias可以方便地开发基于碳水化合物的疫苗和小分子药物。现在,我们提出了一种通过使用全细胞催化剂来合成Sias的各种天然形式和非天然衍生物或类似物的简便方法,该方法是通过将包含必需酶基因的质粒添加到大肠杆菌的代谢工程菌株中来构建的。掺入的酶(N-乙酰氨基葡萄糖2-表异构酶和N-乙酰神经氨酸醛缩酶)使细胞催化剂可以通过易于扩展的发酵过程将各种简单廉价的糖类转化为各种与Sia相关的化合物。此外,使用这种全细胞生物转化结合三个常规酶促反应的合成提供了一系列复杂的含Sia的聚糖(唾液寡糖)及其带有不同取代基的衍生物。本文所述的方法应允许大规模且经济地生产Sias和唾液酸低聚糖,并且可以补充现有的化学和酶促策略。
查看更多