AbstractMembrane‐based gas separations are crucial for an energy‐efficient future. However, it is difficult to develop membrane materials that are high‐performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd‐catalyzed C−O coupling reactions. The scaffold of these microporous polymers consists of rigid three‐dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution‐processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2/CH4 and (H2S+CO2)/CH4 selectivity in mixture tests as predicted by the dual‐mode sorption model. The structural tunability, stability, and ease‐of‐processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.
摘要 以膜为基础的气体分离对未来的能源效率至关重要。然而,开发高性能、可扩展和可加工的膜材料非常困难。微孔有机聚合物(MOPs)兼具气体筛分和溶液可加工性的优点。在此,我们报告了通过钯催化 C-O 偶联反应合成的新型微孔聚(芳基醚)系列的膜性能。这些微孔聚合物的支架由刚性三维三庚烯和立体配位螺二芴组成,赋予了这些聚合物对气体分离具有吸引力的微孔尺寸。这种稳健的 PAE 合成方法可以方便地加入官能团和支链连接体,从而控制渗透性和机械性能。一种可溶液加工的支化聚合物被制成亚微米薄膜,并对其渗透性和选择性进行了表征,实验室数据显示,其性能可与已针对更薄结构进行优化的市售薄膜相媲美。此外,这些材料的分支结构还具有出色的抗塑化能力,其微孔结构和稳定性使其能够从竞争性吸附中获益,如双模式吸附模型所预测的那样,在混合物测试中提高了 CO2/CH4 和(H2S+CO2)/CH4 的选择性。结构的可调性、稳定性和易加工性表明,这种新的微孔聚合物平台提供了可推广的设计策略,可大规模形成澳门威尼斯人官网具,用于工业中要求严格的气体分离。