摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

methyl 4,6-O-benzylidene-2,3-di-O-methyl-α,D-glucopyranoside | 3013-58-9

中文名称
——
中文别名
——
英文名称
methyl 4,6-O-benzylidene-2,3-di-O-methyl-α,D-glucopyranoside
英文别名
methyl 4,6-O-benzylidene-2,3-di-O-methyl-α-D-glucopyranoside;methyl 4,6-O-benzylidine-2,3-di-O-methyl-α,D-glucopyranoside;methyl-2,3-di-O-methyl-4,6-O-benzylidene-α-D-glucopyranoside;methyl 4,6-O-benzylidene-2,3-O-dimethyl-α-D-glucopyranoside;methyl 4,6-O-benzylidine-2,3-di-O-methyl-D-glucopyranoside;methyl-[O4,O6-((R)-benzylidene)-O2,O3-dimethyl-α-D-glucopyranoside];(R)-[Methyl 2,3-di-O-methyl-4,6-O-(phenylmethylene)alpha-D-glucopyranoside];(2R,4aR,6S,7R,8S,8aR)-6,7,8-trimethoxy-2-phenyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxine
methyl 4,6-O-benzylidene-2,3-di-O-methyl-α,D-glucopyranoside化学式
CAS
3013-58-9;3051-89-6;4261-46-5;6748-99-8;13035-20-6;13502-46-0;22893-88-5;35311-32-1;53767-28-5;56586-53-9;56586-54-0;69744-11-2;94480-09-8;120200-48-8;120200-49-9;120200-50-2;120200-52-4
化学式
C16H22O6
mdl
——
分子量
310.347
InChiKey
ZOYHXXDGSUTGIY-AQGHMYMLSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    122-123 °C
  • 沸点:
    411.3±45.0 °C(Predicted)
  • 密度:
    1.20±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    0.9
  • 重原子数:
    22
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.62
  • 拓扑面积:
    55.4
  • 氢给体数:
    0
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    参考文献:
    名称:
    洋地黄毒苷的MeON-新糖苷与6-脱氧和2,6-二脱氧-d-葡萄糖衍生物的合成及其抗癌活性
    摘要:
    心脏苷具有抗癌活性,其脱氧糖链对其抗癌作用至关重要。为了研究强心苷与癌症的构效关系(SAR)并获得更有效的抗癌药,合成并评估了一系列洋地黄毒苷的MeON-新糖苷。首先,从甲基α - d-吡喃葡萄糖苷和2-deoxy- d开始合成十个6-deoxy-和2,6-dideoxy- d-吡喃葡萄糖基供体。-葡萄糖。同时,洋地黄毒苷是通过将市售的地高辛作为糖基受体进行酸性水解而获得的。然后,通过新糖基化方法成功地合成了地高辛配基的22人MeON-新糖苷文库。最后,评估了Nur77表达的诱导及其从细胞核到细胞质的转运以及这些MeON-新糖苷的细胞毒性。SAR分析表明,C3糖基化是诱导Nur77表达所必需的。此外,一些MeON-新糖苷(2b和8b)可显着诱导Nur77的表达及其从细胞核到细胞质的转运。然而,这些化合物对癌细胞的增殖没有抑制作用,表明它们可能不会诱导NIH-H460癌细胞的凋亡,其潜在的潜力和在癌细胞中的应用值得进一步研究。
    DOI:
    10.1016/j.bmcl.2017.06.008
  • 作为产物:
    描述:
    alpha-甲基葡萄糖甙 在 zinc(II) chloride 作用下, 以 甲苯 为溶剂, 反应 28.0h, 生成 methyl 4,6-O-benzylidene-2,3-di-O-methyl-α,D-glucopyranoside
    参考文献:
    名称:
    亚苄基乙醛保护基作为羧酸替代物:官能化的尿酸和糖氨基酸的合成
    摘要:
    已开发出将4,6- O-亚苄基乙缩醛保护基直接氧化为C-6羧酸的方法,该方法可轻松获得大量具有重要生物学意义且具有合成挑战性的糖醛酸和糖氨基酸衍生物,且收率高。RuCl 3 -NaIO 4介导的氧化裂解方法消除了保护和脱保护步骤,并且反应在温和的条件下进行。在有效合成六碳唾液酸类似物和带有糖醛酸的二糖(包括糖胺聚糖类似物)时,利用了亚苄基乙缩醛作为羧酸的保护基和来源的双重作用。
    DOI:
    10.1002/chem.201503998
点击查看最新优质反应信息

文献信息

  • Defining oxyanion reactivities in base-promoted glycosylations
    作者:Martin Matwiejuk、Joachim Thiem
    DOI:10.1039/c1cc11690h
    日期:——
    Saccharide oxyanions obtained by base treatment could be employed in glycosylation to give oligosaccharides with high stereo- and regioselectivities.
    通过碱处理获得的糖类氧阴离子可用于糖基化以产生具有高立体选择性和区域选择性的寡糖。
  • Compositions and methods for modification of biomolecules
    申请人:The Regents of the University of California
    公开号:US09260371B2
    公开(公告)日:2016-02-16
    The present invention provides modified cycloalkyne compounds; and method of use of such compounds in modifying biomolecules. The present invention features a cycloaddition reaction that can be carried out under physiological conditions. In general, the invention involves reacting a modified cycloalkyne with an azide moiety on a target biomolecule, generating a covalently modified biomolecule. The selectivity of the reaction and its compatibility with aqueous environments provide for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).
    本发明提供了改性的环炔化合物;以及使用这些化合物在生理条件下进行生物分子修饰的方法。本发明特点是一种可以在生理条件下进行的环加成反应。一般来说,该发明涉及将改性的环炔与目标生物分子上的叠氮基团反应,生成共价修饰的生物分子。该反应的选择性和与水环境的兼容性使其适用于体内(例如,细胞表面或细胞内)和体外(例如,合成肽类和其他聚合物,生产修饰的(例如,标记的)氨基酸)的应用。
  • Establishment of Guidelines for the Control of Glycosylation Reactions and Intermediates by Quantitative Assessment of Reactivity
    作者:Chun‐Wei Chang、Chia‐Hui Wu、Mei‐Huei Lin、Pin‐Hsuan Liao、Chun‐Chi Chang、Hsiao‐Han Chuang、Su‐Ching Lin、Sarah Lam、Ved Prakash Verma、Chao‐Ping Hsu、Cheng‐Chung Wang
    DOI:10.1002/anie.201906297
    日期:2019.11.18
    Stereocontrolled chemical glycosylation remains a major challenge despite vast efforts reported over many decades and so far still mainly relies on trial and error. Now it is shown that the relative reactivity value (RRV) of thioglycosides is an indicator for revealing stereoselectivities according to four types of acceptors. Mechanistic studies show that the reaction is dominated by two distinct intermediates:
    尽管数十年来进行了大量的努力,但立体控制的化学糖基化仍然是一个主要挑战,到目前为止,仍然主要依靠反复试验。现在表明,硫糖苷的相对反应性值(RRV)是根据四种受体揭示立体选择性的指标。机理研究表明,该反应由两种不同的中间体控制:糖基三氟甲磺酸酯和来自N-卤代琥珀酰亚胺(NXS)/ TfOH的糖基卤化物。糖基卤化物的形成与α-糖苷的产生高度相关。这些发现使得能够通过使用RRV作为α/β-选择性指示剂来预见糖基化反应,并且为立体控制糖基化开发了指导方针和规则。
  • Selective deprotection of an acetal group in monosaccharide derivatives and related compounds using Me3SiCH2MgCl
    作者:Yu-Huei Chen、Yueh-Ting Tseng、Tien-Yau Luh
    DOI:10.1039/cc9960000327
    日期:——
    Treatment of an acetal of a contiguous diol with Me3SiCH2MgCl liberates the corresponding diol regioselectively; chelation is used to rationalize the selectively.
    用Me3SiCH2MgCl处理相邻二醇的缩醛可以有选择性地释放出相应的二醇;配位作用被用来合理化这种选择性。
  • Cleavage of 4,6-O-Benzylidene Acetal Using Sodium Hydrogen Sulfate Monohydrate
    作者:Masahiko Hayashi、Kyosuke Michigami、Manami Terauchi
    DOI:10.1055/s-0033-1338469
    日期:——
    using sodium hydrogen sulfate monohydrate under mild conditions. The use of protecting groups is an important protocol in carbohydrate synthesis. Among protecting groups, benzylidene acetals­ are generally more stable than other acetals; therefore, strong conditions are often required for deprotection. We report the deprotection of 4,6-O-benzylidene derivatives using sodium hydrogen sulfate monohydrate
    摘要 保护基的使用是碳水化合物合成中的重要方案。在保护基中,亚苄基乙缩醛通常比其他乙缩醛更稳定。因此,脱保护通常需要严格的条件。我们报道了在温和的条件下使用一水合硫酸氢钠对4,6- O-亚苄基衍生物的脱保护。 保护基的使用是碳水化合物合成中的重要方案。在保护基中,亚苄基乙缩醛通常比其他乙缩醛更稳定。因此,脱保护通常需要严格的条件。我们报道了在温和的条件下使用一水合硫酸氢钠对4,6- O-亚苄基衍生物的脱保护。
查看更多

同类化合物

苯甲基-2-乙酰氨基-4,6-O-苯亚甲基-2-脱氧-Alpha-D-吡喃葡萄糖苷 苯-1,2-二基二(磷羧酸酯) 苄基N-乙酰基-4,6-O-亚苄基-alpha-异胞壁酸 苄基4-氰基-4-脱氧-2,3-O-[(1S,2S)-1,2-二甲氧基-1,2-二甲基-1,2-乙二基]-beta-D-阿拉伯糖吡喃糖苷 苄基4,6-O-亚苄基吡喃己糖苷 苄基3-O-苄基-4,6-O-亚苄基吡喃己糖苷 苄基2-乙酰氨基-4,6-O-亚苄基-3-O-(羧甲基)-2-脱氧吡喃己糖苷 苄基(5Xi)-2-乙酰氨基-2-脱氧-4,6-O-异亚丙基-alpha-D-来苏-吡喃己糖苷 苄基 4,6-O-亚苄基-beta-D-吡喃半乳糖苷 苄基 4,6-O-亚苄基-alpha-D-吡喃半乳糖苷 苄基 4,6-O-亚苄基-2,3-二-O-苄基-alpha-D-吡喃半乳糖苷 苄基 2-乙酰氨基-2-脱氧-4,6-O-异亚丙基-beta-D-吡喃葡萄糖苷 苄基 2-乙酰氨基-2-脱氧-4,6-O-亚苄基-alpha-D-吡喃半乳糖苷 苄基 2-O-苄基-4,6-O-亚苄基-alpha-D-吡喃甘露糖苷 苄基 2,3-二-O-苄基-4,6-O-亚苄基-beta-D-吡喃葡萄糖苷 苄基 2,3-二-O-(苯基甲基)-4,6-O-(苯基亚甲基)-ALPHA-D-吡喃甘露糖苷 甲基4-O,6-O-(苯基亚甲基)-2,3-二脱氧-alpha-D-赤式-吡喃己糖苷 甲基4,6-O-异亚丙基吡喃己糖苷 甲基4,6-O-异亚丙基-beta-D-吡喃半乳糖苷 甲基4,6-O-亚苄基-3-脱氧-3-硝基-beta-D-吡喃葡萄糖苷 甲基4,6-O-亚乙基-alpha-D-吡喃葡萄糖苷 甲基4,6-O-[(4-甲氧基苯基)亚甲基]-2,3-二-O-(苯基甲基)-ALPHA-D-吡喃葡萄糖苷 甲基4,6-O-[(4-甲氧基苯基)亚甲基]-2,3-二-O-(苯基甲基)-ALPHA-D-吡喃半乳糖苷 甲基3-O-苯甲酰基-4,6-O-亚苄基-beta-D-吡喃半乳糖苷 甲基3-O-苯甲酰基-4,6-O-亚苄基-alpha-D-吡喃葡萄糖苷 甲基2.3-二-O-苯甲酸基-4,6-O-亚苄基-β-D-喃葡萄苷 甲基2-乙酰氨基-4,6-O-亚苄基-2-脱氧吡喃己糖苷 甲基2-O-烯丙基-3-O-苄基-4,6-O-亚苄基吡喃己糖苷 甲基2,3-O-二烯丙基-4,6-O-亚苄基-alpha-D-吡喃甘露糖苷 甲基-4,6-O-亚苄基-Α-D-吡喃葡糖苷 甲基-2,3-二-O-苯甲酰基-4,6-O-苯亚甲基-α-D-吡喃葡萄糖苷 甲基 4,6-O-亚苄基-β-D-吡喃葡萄糖苷 甲基 4,6-O-亚苄基-3-O-甲基-alpha-D-吡喃甘露糖苷 甲基 4,6-O-(苯基亚甲基)-alpha-D-吡喃葡萄糖苷 2-苯甲酸酯 甲基 4,6-O-(苯基亚甲基)-ALPHA-D-吡喃半乳糖苷二乙酸酯 甲基 3-O-苯甲酰基-4,6-O-亚苄基-beta-D-吡喃甘露糖苷 甲基 3-O-烯丙基-4,6-O-亚苄基-alpha-D-吡喃甘露糖苷 甲基 2,3-二苯甲酰-4,6-O-亚苄基-beta-D-吡喃半乳糖苷 烯丙基-4,6-O-苯亚甲基-α-D-吡喃葡萄糖苷 烯丙基-4,6-O-亚苄基-beta-D-吡喃葡萄糖苷 山海绵酰胺A 对硝基苯基 2-乙酰氨基-4,6-O-亚苄基-2-脱氧-beta-D-吡喃葡萄糖苷 亚苄基葡萄糖 二甲基二烯丙基氯化铵-丙烯酰胺共聚物 乙基 4,6-O-亚苄基吡喃己糖苷 N-乙酰基-1-O-苄基-4,6-O-(亚苄基)-alpha-异胞壁酸甲酯 N-乙酰基-1-O-(苯基甲基)-4,6-O-(苯基亚甲基)-ALPHA-胞壁酸 N-[(4aR,6R,7R,8R,8aS)-6-苄氧基-8-羟基-2-苯基-4,4A,6,7,8,8A-六氢吡喃并[5,6-d][1,3]二恶英-7-基]乙酰胺 N-(6-烯丙氧基-8-羟基-2-苯基-4,4a,6,7,8,8a-六氢吡喃并[5,6-d][1,3]二恶英-7-基)乙酰胺 N-(6-烯丙氧基-8-羟基-2-苯基-4,4A,6,7,8,8A-六氢吡喃并[5,6-d][1,3]二恶英-7-基)乙酰胺