摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,5-bis[3-(pyrid-3-yl)-1,2,5-thiadiazol-4-yloxy]pentane | 274688-22-1

中文名称
——
中文别名
——
英文名称
1,5-bis[3-(pyrid-3-yl)-1,2,5-thiadiazol-4-yloxy]pentane
英文别名
3-Pyridin-3-yl-4-[5-[(4-pyridin-3-yl-1,2,5-thiadiazol-3-yl)oxy]pentoxy]-1,2,5-thiadiazole
1,5-bis[3-(pyrid-3-yl)-1,2,5-thiadiazol-4-yloxy]pentane化学式
CAS
274688-22-1
化学式
C19H18N6O2S2
mdl
——
分子量
426.523
InChiKey
IZQBNIGBIRQVED-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    97-98 °C(Solv: ethyl acetate (141-78-6); hexane (110-54-3))
  • 沸点:
    592.1±50.0 °C(Predicted)
  • 密度:
    1.346±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.4
  • 重原子数:
    29
  • 可旋转键数:
    10
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.26
  • 拓扑面积:
    152
  • 氢给体数:
    0
  • 氢受体数:
    10

反应信息

  • 作为反应物:
    描述:
    1,5-bis[3-(pyrid-3-yl)-1,2,5-thiadiazol-4-yloxy]pentane 在 sodium tetrahydroborate 作用下, 以 甲醇氯仿 为溶剂, 生成 3-(1-methyl-3,6-dihydro-2H-pyridin-5-yl)-4-[5-[[4-(1-methyl-3,6-dihydro-2H-pyridin-5-yl)-1,2,5-thiadiazol-3-yl]oxy]pentoxy]-1,2,5-thiadiazole
    参考文献:
    名称:
    Design and development of selective muscarinic agonists for the treatment of Alzheimer's disease: characterization of tetrahydropyrimidine derivatives and development of new approaches for improved affinity and selectivity for M1 receptors
    摘要:
    Cholinergic neurons degenerate in Alzheimer's disease, resulting in cognitive impairments and memory deficits, and drug development efforts have focused on selective M1 muscarinic agonists. 5-(3-Ethyl-1,2,4- oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine trifluoroacetic acid (CDD-0102) stimulates M1 muscarinic receptors in rat brain [Messer, W.S., Jr., Abuh, Y.F., Liu, Y., Periyasamy, S., Ngur, D.O., Edgar, M.A., El-Assadi, A.A., Sbeih, S., Dunbar, P.G., Roknich, S., Rho, T., Fang, Z., Ojo, B., Zhang, H., Huzl, J.J., III, Nagy, P.I., 1997a. J. Med. Chem. 40, 1230-1246.] and improves memory function in rats with lesions of the basal forebrain cholinergic system. Moreover, CDD-0102 exhibits oral bioavailability, few side effects and low toxicity, and thus represents a viable candidate for clinical studies. Despite the development of functionally selective agonists such as xanomeline and CDD-0102, there is room for improvements in ligand affinity and selectivity. The high degree of amino acid homology within transmembrane domains has hindered the development of truly selective agonists. Site-directed mutagenesis, biochemical and molecular modeling studies have identified key amino acid residues such as Thr192 and Asn382 in the binding of agonist to M1 receptors [Huang, X.P., Nagy, P.I., Williams, F.E., Peseckis, S.M., Messer, W.S., Jr., 1999. Br. J. Pharmacol. 126, 735-745.]. Recent work has implicated residues at the top of transmembrane domain VI in the binding of muscarinic agonists and activation of M1 receptors [Huang, X.P., Williams, F.E., Peseckis, S.M., Messer, W.S., Jr., 1998. J. Pharmacol. Exp. Ther. 286, 1129-1139.]. Thus, residues such as Ser388 represent molecular targets for the further development of agonists with improved M1 receptor affinity, selectivity and activity.
    DOI:
    10.1016/s0031-6865(99)00026-6
  • 作为产物:
    参考文献:
    名称:
    Design and development of selective muscarinic agonists for the treatment of Alzheimer's disease: characterization of tetrahydropyrimidine derivatives and development of new approaches for improved affinity and selectivity for M1 receptors
    摘要:
    Cholinergic neurons degenerate in Alzheimer's disease, resulting in cognitive impairments and memory deficits, and drug development efforts have focused on selective M1 muscarinic agonists. 5-(3-Ethyl-1,2,4- oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine trifluoroacetic acid (CDD-0102) stimulates M1 muscarinic receptors in rat brain [Messer, W.S., Jr., Abuh, Y.F., Liu, Y., Periyasamy, S., Ngur, D.O., Edgar, M.A., El-Assadi, A.A., Sbeih, S., Dunbar, P.G., Roknich, S., Rho, T., Fang, Z., Ojo, B., Zhang, H., Huzl, J.J., III, Nagy, P.I., 1997a. J. Med. Chem. 40, 1230-1246.] and improves memory function in rats with lesions of the basal forebrain cholinergic system. Moreover, CDD-0102 exhibits oral bioavailability, few side effects and low toxicity, and thus represents a viable candidate for clinical studies. Despite the development of functionally selective agonists such as xanomeline and CDD-0102, there is room for improvements in ligand affinity and selectivity. The high degree of amino acid homology within transmembrane domains has hindered the development of truly selective agonists. Site-directed mutagenesis, biochemical and molecular modeling studies have identified key amino acid residues such as Thr192 and Asn382 in the binding of agonist to M1 receptors [Huang, X.P., Nagy, P.I., Williams, F.E., Peseckis, S.M., Messer, W.S., Jr., 1999. Br. J. Pharmacol. 126, 735-745.]. Recent work has implicated residues at the top of transmembrane domain VI in the binding of muscarinic agonists and activation of M1 receptors [Huang, X.P., Williams, F.E., Peseckis, S.M., Messer, W.S., Jr., 1998. J. Pharmacol. Exp. Ther. 286, 1129-1139.]. Thus, residues such as Ser388 represent molecular targets for the further development of agonists with improved M1 receptor affinity, selectivity and activity.
    DOI:
    10.1016/s0031-6865(99)00026-6
点击查看最新优质反应信息

文献信息

  • Design, Synthesis, and Biological Characterization of Bivalent 1-Methyl-1,2,5,6-tetrahydropyridyl-1,2,5-thiadiazole Derivatives as Selective Muscarinic Agonists
    作者:W. G. Rajeswaran、Yang Cao、Xi-Ping Huang、Mary Elizabeth Wroblewski、Tracy Colclough、Selina Lee、Fenghua Liu、Peter I. Nagy、James Ellis、Beth A. Levine、Karl H. Nocka、William S. Messer
    DOI:10.1021/jm0102405
    日期:2001.12.1
    Selective muscarinic agonists could be useful in the treatment of neurological disorders such as Alzheimer's disease, schizophrenia, and chronic pain. Many muscarinic agonists have been developed, yet most exhibit at best limited functional selectivity for a given receptor subtype perhaps because of the high degree of sequence homology within the putative binding site, which appears to be buried within the transmembrane domains. Bivalent compounds containing essentially two agonist pharmacophores within the same molecule were synthesized and tested for receptor binding affinity and muscarinic agonist activity. A series of bis-1,2,5-thiadiazole derivatives of 1,2,5,6-tetrahydropyridine linked by an alkyloxy moiety exhibited very high affinity (K-i < 1 nM) and strong agonist activity. The degree of activity depended on the length of the linking alkyl group, which could be replaced by a poly(ethylene glycol) moiety, resulting in improved water solubility, binding affinity, and agonist potency.
  • Design and development of selective muscarinic agonists for the treatment of Alzheimer's disease: characterization of tetrahydropyrimidine derivatives and development of new approaches for improved affinity and selectivity for M1 receptors
    作者:William S. Messer、W.G. Rajeswaran、Yang Cao、Hai-Jun Zhang、Afif A. El-Assadi、Colleen Dockery、Jill Liske、John O'Brien、Frederick E. Williams、Xi-Ping Huang、Mary E. Wroblewski、Peter I. Nagy、Steven M. Peseckis
    DOI:10.1016/s0031-6865(99)00026-6
    日期:2000.3
    Cholinergic neurons degenerate in Alzheimer's disease, resulting in cognitive impairments and memory deficits, and drug development efforts have focused on selective M1 muscarinic agonists. 5-(3-Ethyl-1,2,4- oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine trifluoroacetic acid (CDD-0102) stimulates M1 muscarinic receptors in rat brain [Messer, W.S., Jr., Abuh, Y.F., Liu, Y., Periyasamy, S., Ngur, D.O., Edgar, M.A., El-Assadi, A.A., Sbeih, S., Dunbar, P.G., Roknich, S., Rho, T., Fang, Z., Ojo, B., Zhang, H., Huzl, J.J., III, Nagy, P.I., 1997a. J. Med. Chem. 40, 1230-1246.] and improves memory function in rats with lesions of the basal forebrain cholinergic system. Moreover, CDD-0102 exhibits oral bioavailability, few side effects and low toxicity, and thus represents a viable candidate for clinical studies. Despite the development of functionally selective agonists such as xanomeline and CDD-0102, there is room for improvements in ligand affinity and selectivity. The high degree of amino acid homology within transmembrane domains has hindered the development of truly selective agonists. Site-directed mutagenesis, biochemical and molecular modeling studies have identified key amino acid residues such as Thr192 and Asn382 in the binding of agonist to M1 receptors [Huang, X.P., Nagy, P.I., Williams, F.E., Peseckis, S.M., Messer, W.S., Jr., 1999. Br. J. Pharmacol. 126, 735-745.]. Recent work has implicated residues at the top of transmembrane domain VI in the binding of muscarinic agonists and activation of M1 receptors [Huang, X.P., Williams, F.E., Peseckis, S.M., Messer, W.S., Jr., 1998. J. Pharmacol. Exp. Ther. 286, 1129-1139.]. Thus, residues such as Ser388 represent molecular targets for the further development of agonists with improved M1 receptor affinity, selectivity and activity.
查看更多