Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: Discovery of YM543
摘要:
Here, a series of C-glucosides with azulene rings in the aglycon moiety was synthesized and the inhibitory activities toward hSGLT1 and hSGLT2 were evaluated. Starting from the azulene derivative 7 which had relatively good SGLT2 inhibitory activity, compound 8a which has a 3-[(azulen-2-yl)methyl]phenyl group was identified as a lead compound for further optimization. Introduction of a phenolic hydroxyl group onto the central benzene ring afforded a potent and selective SGLT2 inhibitor 8e, which reduced blood glucose levels in a dose-dependent manner in rodent diabetic models. A mono choline salt of 8e (YM543) was selected as a clinical candidate for use in treating type 2 diabetes mellitus. (C) 2013 Elsevier Ltd. All rights reserved.
Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: Discovery of YM543
摘要:
Here, a series of C-glucosides with azulene rings in the aglycon moiety was synthesized and the inhibitory activities toward hSGLT1 and hSGLT2 were evaluated. Starting from the azulene derivative 7 which had relatively good SGLT2 inhibitory activity, compound 8a which has a 3-[(azulen-2-yl)methyl]phenyl group was identified as a lead compound for further optimization. Introduction of a phenolic hydroxyl group onto the central benzene ring afforded a potent and selective SGLT2 inhibitor 8e, which reduced blood glucose levels in a dose-dependent manner in rodent diabetic models. A mono choline salt of 8e (YM543) was selected as a clinical candidate for use in treating type 2 diabetes mellitus. (C) 2013 Elsevier Ltd. All rights reserved.
The present invention provides an azulene derivative and a salt thereof, wherein an azulene ring is bonded to a benzene ring directly or via a lower alkylene which may be substituted with a halogen atom and the benzene ring is directly bonded to the glucose residue, and it is usable as a Na
+
-glucose cotransporter inhibitor, especially for a therapeutic and/or preventive agent for diabetes such as insulin-dependent diabetes (type 1 diabetes) and insulin-independent diabetes (type 2 diabetes), as well as diabetes-related diseases such as insulin-resistant diseases and obesity.
The present invention provides an azulene derivative and a salt thereof, wherein an azulene ring is bonded to a benzene ring directly or via a lower alkylene which may be substituted with a halogen atom and the benzene ring is directly bonded to the glucose residue, and it is usable as a Na+-glucose cotransporter inhibitor, especially for a therapeutic and/or preventive agent for diabetes such as insulin-dependent diabetes (type 1 diabetes) and insulin-independent diabetes (type 2 diabetes), as well as diabetes-related diseases such as insulin-resistant diseases and obesity.
Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: Discovery of YM543
Here, a series of C-glucosides with azulene rings in the aglycon moiety was synthesized and the inhibitory activities toward hSGLT1 and hSGLT2 were evaluated. Starting from the azulene derivative 7 which had relatively good SGLT2 inhibitory activity, compound 8a which has a 3-[(azulen-2-yl)methyl]phenyl group was identified as a lead compound for further optimization. Introduction of a phenolic hydroxyl group onto the central benzene ring afforded a potent and selective SGLT2 inhibitor 8e, which reduced blood glucose levels in a dose-dependent manner in rodent diabetic models. A mono choline salt of 8e (YM543) was selected as a clinical candidate for use in treating type 2 diabetes mellitus. (C) 2013 Elsevier Ltd. All rights reserved.