中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
(1H-吲哚-3-基)乙醛肟 | (1H-Indol-3-yl)acetaldehyde oxime | 2776-06-9 | C10H10N2O | 174.202 |
吲哚-3-乙腈 | 3-indoleacetonitrile | 771-51-7 | C10H8N2 | 156.187 |
吲哚-3-乙醛 | indole-3-acetaldehyde | 2591-98-2 | C10H9NO | 159.188 |
3-(2-硝基乙基)吲哚 | 3-(2-nitroethyl)indole | 31731-23-4 | C10H10N2O2 | 190.202 |
L-色氨酸 | L-Tryptophan | 73-22-3 | C11H12N2O2 | 204.228 |
—— | N-Hydroxytryptophan | 87843-31-0 | C11H12N2O3 | 220.228 |
中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
吲哚-3-乙腈 | 3-indoleacetonitrile | 771-51-7 | C10H8N2 | 156.187 |
卡马莱辛(3-噻唑-2-基吲哚)是由拟南芥产生的吲哚生物碱植物抗菌素,被认为对抵抗坏死性真菌病原体(如十字花科黑轮纹菌和灰霉菌)很重要。它是由色氨酸产生的,色氨酸通过细胞色素P450单氧酶CYP79B2和CYP79B3的作用转化为吲哚乙醛肟(IAOx)。其余的生物合成步骤尚不清楚,只有最后一步是由CYP71B15(PAD3)将二氢卡马莱辛酸转化为卡马莱辛。本文报道了CYP71A13的特性。携带cyp71A13突变的植物在感染烟草青霉病菌或十字花科黑轮纹菌后产生的卡马莱辛大大减少,并且易感于十字花科黑轮纹菌,与pad3和cyp79B2 cyp79B3突变体一样。CYP71A13和PAD3的表达水平是共调节的。在大肠杆菌中表达的CYP71A13将IAOx转化为吲哚-3-乙腈(IAN)。在烟草中表达CYP79B2和CYP71A13导致色氨酸转化为IAN。外源供应的IAN恢复了cyp71A13突变体植物中的卡马莱辛产生。综上所述,这些结果表明CYP71A13催化卡马莱辛合成中IAOx到IAN的转化,并进一步支持卡马莱辛在抵抗十字花科黑轮纹菌中的作用。
The defense-related plant metabolites known as glucosinolates play important roles in agriculture, ecology, and human health. Despite an advanced biochemical understanding of the glucosinolate pathway, the source of the reduced sulfur atom in the core glucosinolate structure remains unknown. Recent evidence has pointed toward GSH, which would require further involvement of a GSH conjugate processing enzyme. In this article, we show that an Arabidopsis thaliana mutant impaired in the production of the γ-glutamyl peptidases GGP1 and GGP3 has altered glucosinolate levels and accumulates up to 10 related GSH conjugates. We also show that the double mutant is impaired in the production of camalexin and accumulates high amounts of the camalexin intermediate GS-IAN upon induction. In addition, we demonstrate that the cellular and subcellular localization of GGP1 and GGP3 matches that of known glucosinolate and camalexin enzymes. Finally, we show that the purified recombinant GGPs can metabolize at least nine of the 10 glucosinolate-related GSH conjugates as well as GS-IAN. Our results demonstrate that GSH is the sulfur donor in the biosynthesis of glucosinolates and establish an in vivo function for the only known cytosolic plant γ-glutamyl peptidases, namely, the processing of GSH conjugates in the glucosinolate and camalexin pathways.
被称为葡萄糖硫醇苷的防御相关植物代谢物在农业、生态和人类健康中都扮演着重要角色。尽管对葡萄糖硫醇苷途径的生物化学理解已经很先进,但核心葡萄糖硫醇苷结构中还原硫原子的来源仍然未知。最近的证据指出了GSH,这将需要进一步涉及GSH结合物处理酶。在本文中,我们展示了一种Arabidopsis thaliana突变体,其生产γ-谷氨酰肽酶GGP1和GGP3受损,其葡萄糖硫醇苷水平发生改变,并积累了多达10个相关的GSH结合物。我们还展示了双突变体在产生卡马雷辛方面存在障碍,并在诱导后积累高量的卡马雷辛中间体GS-IAN。此外,我们证明了GGP1和GGP3的细胞和亚细胞定位与已知的葡萄糖硫醇苷和卡马雷辛酶相匹配。最后,我们展示了纯化的重组GGP能够代谢至少10个与葡萄糖硫醇苷相关的GSH结合物以及GS-IAN。我们的结果表明,GSH是葡萄糖硫醇苷生物合成中的硫供体,并为唯一已知的细胞质植物γ-谷氨酰肽酶建立了在体功能,即处理葡萄糖硫醇苷和卡马雷辛途径中的GSH结合物。