sed supported ionicliquid phase (Rh@SILP(Ph3‐P‐NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionicliquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionicliquid is required for
Catalytic hydrogenation of aromatic hydrocarbons. Stereochemical definition of the catalytic cycle for .eta.3-C3H5Co(P(OCH3)3)3
作者:J. R. Bleeke、E. L. Muetterties
DOI:10.1021/ja00393a011
日期:1981.2
The eta/sup 3/-C/sub 3/H/sub 5/Co(P(OCH/sub3/)/sub3/)/sub 3/-catalyzed hydrogenations with D/sub 2/ of a series of unsaturated organic molecules, including cyclohexenes, cyclohexadienes, and arenes, have been investigated. Complete cis stereoselectivity was observed in the addition of deuterium to the unsaturated ring systems. When alkyl-substituted arenes were reduced with D/sub 2/, the hydrogen
eta/sup 3/-C/sub 3/H/sub 5/Co(P(OCH/sub 3/)/sub 3/)/sub 3/-催化加氢与D/sub 2/一系列不饱和已经研究了有机分子,包括环己烯、环己二烯和芳烃。在向不饱和环系统中加入氘时观察到完全顺式立体选择性。当烷基取代的芳烃用 D/sub 2/ 还原时,只要链中的每个连续碳原子具有至少一个氢原子,烷基链中的氢原子就会发生 HD 交换。因此,广泛的 HD 交换发生在正烷基侧链中,而叔丁基侧链不含氘。当烷基取代的芳烃在烯烃如 1-己烯存在下氢化时,观察到多种异构的烷基环己烯和烯基环己烷。这些异构体物种的相对浓度提供了关于催化循环中(烯烃)钴物种的相对稳定性的信息。从其他竞争性反应,即涉及等摩尔量的两种不同不饱和分子的氢化反应中获得了进一步的机理信息。在对eta/sup 3/-C/sub 8/H/sub 13/Co(P(OCH/sub 3/)/sub
Selective Hydrodeoxygenation of Aromatics to Cyclohexanols over Ru Single Atoms Supported on CeO<sub>2</sub>
by oxidation of fossil feedstocks. Selective hydrodeoxygenation of lignin derivatives has great potential for producing these chemicals but is challenging to obtain high yields. Here, we report that CeO2-supported Ru single-atom catalysts (SACs) enabled the hydrogenation of the benzene ring and catalyzedetheric C–O(R) bond cleavage without changing the C–O(H) bond, which could afford 99.9% yields of
环己醇是一种用途广泛的化学品,主要通过化石原料的氧化生产。木质素衍生物的选择性加氢脱氧具有生产这些化学品的巨大潜力,但要获得高产率具有挑战性。在这里,我们报告 CeO 2- 负载的 Ru 单原子催化剂 (SAC) 能够在不改变 C-O(H) 键的情况下实现苯环的氢化和催化醚 C-O(R) 键的断裂,这可以提供 99.9% 的环己醇收率。据我们所知,这是首次报道SAC催化芳环氢化。通过控制实验和密度泛函理论计算研究了反应机理。在催化剂中,形成了 Ru-O-Ce 位点,一个 Ru 原子与大约四个 O 原子配位。这些催化位点可以有效地实现加氢和脱氧反应,从而生成所需的环己醇。这项工作开创了单原子催化芳烃转化的先河,为环己醇的合成提供了一条新途径。
The Preparation of Some Mono- and Dialkylcyclohexanes